首页> 外文期刊>Mechanical systems and signal processing >Optimizing constraint obedience for mechanical systems: Robust control and non-cooperative game
【24h】

Optimizing constraint obedience for mechanical systems: Robust control and non-cooperative game

机译:优化机械系统的约束服从:强大的控制和非合作游戏

获取原文
获取原文并翻译 | 示例

摘要

This paper focuses on the optimization of constraint obedience for mechanical systems based on robust control design and non-cooperative game theory. The (possibly fast) time-varying but bounded system uncertainty is considered. First, it aims at a controller to drive the concerned system to follow a set of prescribed constraints. A problem of constraint-following is formulated with a β-measure as the gauge of constraint-following error, and then a robust control with two tunable parameters is proposed to render the measure to be uniformly bounded and uniformly ultimately bounded. Second, it aims at the optimal design of control parameters. A two-player non-cooperative game is formulated with two cost functions, each of which is dominated by one tunable parameter and consists of three parts: the state cost, the time cost and the control cost. Finally, the Nash equilibrium (i.e., the optimal control parameters) is obtained by minimizing the cost functions. By this, the optimization of constraint obedience for mechanical systems is achieved with the existence, uniqueness, and analytical expression of the Nash equilibrium.
机译:本文侧重于基于鲁棒控制设计和非合作博弈论的机械系统的优化优化。 (可能是快速)的时变但有界系统不确定性被认为是。首先,它的目标是控制器以驱动有关系统遵循一组规定的约束。用β-措施作为约束误差的仪表配制了约束的问题,然后提出了一种具有两个可调参数的鲁棒控制,以使测量均匀界限和均匀最终界定。其次,它的目标是控制参数的最佳设计。双人非合作游戏具有两个成本函数,每个都是由一个可调参数主导的,并且由三个部分组成:状态成本,时间成本和控制成本。最后,通过最小化成本函数来获得纳什均衡(即最佳控制参数)。由此,利用纳什均衡的存在,唯一性和分析表达实现了机械系统的约束顺从的优化。

著录项

  • 来源
    《Mechanical systems and signal processing》 |2021年第2期|107207.1-107207.20|共20页
  • 作者单位

    The School of Mechanical Engineering Nanjing University of Science and Technology Nanjing Jiangsu 210094 PR China The Department of Mechanical Engineering University of California Berkeley Berkeley CA 94720 USA;

    The School of Mechanical Engineering Nanjing University of Science and Technology Nanjing Jiangsu 210094 PR China;

    The School of Mechanical Engineering Nanjing University of Science and Technology Nanjing Jiangsu 210094 PR China;

    The George W. Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta Georgia 30332 USA The Key Laboratory of Road Construction Technology and Equipment of MOE Chang'an University Xi'an Shanxi 710064 PR China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Mechanical systems; Constraint-following; Robust control; Non-cooperative games; Optimal design;

    机译:机械系统;约束跟随;强大的控制;非合作游戏;最佳设计;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号