首页> 外文期刊>Mechanical systems and signal processing >Application of adaptive wavelet transform based multiple analytical mode decomposition for damage progression identification of Cable-Stayed bridge via shake table test
【24h】

Application of adaptive wavelet transform based multiple analytical mode decomposition for damage progression identification of Cable-Stayed bridge via shake table test

机译:自适应小波变换的应用基于多分析模式分解对摇轴测试斜拉桥损伤进展识别

获取原文
获取原文并翻译 | 示例

摘要

Extracting useful information (damage existence, location, identification, and quantification) from measured signals for damage identification is critical in structural health monitoring, while time-varying nature of most signals often require huge efforts. In this paper, adaptive wavelet analysis AWT is first introduced as a preprocessing approach of clearer, smoother and more accurate time-frequency representation. Optimized analytical mode decomposition (AMD) is then utilized for signal component extraction, with the help of AWT for bisecting frequency determination. Examples of time-varying signals of sinusoidal function and Duffing systems are used to illustrate the advantages of the algorithm, which proves to be successful in signal decomposition. Multiple AMD (MAMD) with the optimized algorithm is then utilized together with AWT for signal decomposition and system identification of the shake table test of a 1/20-scale cable-stayed bridge model. The extracted stiffness and damping coefficients retain a preliminary indication of the damage progression during the earthquake input.
机译:从测量信号中提取有用的信息(损伤存在,位置,识别和量化)对于损坏识别,对于结构健康监测至关重要,而大多数信号的时变性通常需要巨大的努力。在本文中,首先引入自适应小波分析AWT作为更清晰,更光滑和更准确的时频表示的预处理方法。随后利用优化的分析模式分解(AMD)进行信号分量提取,借助于双重频率确定。正弦函数和Duffing系统的时变信号的示例用于说明算法的优点,这证明是在信号分解中成功的。然后,具有优化算法的多个AMD(MAMD)与AWT一起用于信号分解和1/20级电缆停留桥模型的摇动台测试的信号分解和系统识别。提取的刚度和阻尼系数在地震输入期间保留了损坏进展的初步指示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号