首页> 外文期刊>Mechanical systems and signal processing >A unified scheme to solving arbitrary complex-valued ratio distribution with application to statistical inference for raw frequency response functions and transmissibility functions
【24h】

A unified scheme to solving arbitrary complex-valued ratio distribution with application to statistical inference for raw frequency response functions and transmissibility functions

机译:一种统一的方案,可以用应用于原始频率响应函数和传输功能的统计推断求解任意复值比分布

获取原文
获取原文并翻译 | 示例

摘要

Complex-valued ratio distributions arises in many real applications such as statistical inference for frequency response functions (FRFs) and transmissibility functions (TFs) in structural health monitoring. As a sequel to our previous study, a unified scheme to solving complex ratio random variables is proposed in this study for the case when it is highly non-trivial or impossible to discover a closed-form solution such as the complex-valued t ratio distribution. Based on the probability transformation principle in the complex-valued domain, a unified formula is derived by reducing the concerned problem into multidimensional integrals, which can be solved by advanced numerical techniques. A fast sparse-grid quadrature (SGQ) scheme by constructing multivariate quadrature formulas using the combinations of tensor products of suitable one-dimensional formulas is utilized to improve the computational efficiency by avoiding the problem of curse of integral dimensionality. The unified methodology enables the efficient calculation of the probability density function (PDF) of a ratio random variable with its denominator and nominator specified by arbitrary probability distributions including Gaussian or non-Gaussian ratio random variables, correlated or independent random variables, bounded or unbounded ratio random variables. The unified scheme is applied to uncertainty quantification for raw FRFs and TFs without any post-processing such as averaging, smoothing and windowing, and the efficiency of the proposed scheme is verified by using the vibration test field data from a simply supported beam and from the Alamosa Canyon Bridge.
机译:在许多实际应用中,复值比率分布在诸如结构健康监测中的频率响应函数(FRF)和传输功能(TFS)的统计推理,例如统计推断。作为我们之前的研究的续集,在本研究中提出了对求解复杂比随机变量的统一方案,因为在对诸如复合值的T比分布之类的封闭溶液如上存在封闭式溶液时,在该研究中提出了这种研究。 。基于复值域中的概率变换原理,通过将相关的问题降低到多维积分中来导出统一的公式,这可以通过先进的数值技术来解决。利用使用合适的一维公式的张量产物的组合构建多变量正交公式来通过避免积分维度的诅咒问题来构建多变量正交公式来构建多变量正交公式来改善计算效率。统一方法可以利用包括高斯或非高斯比例随机变量,相关或无关的随机变量,有界或无界或无界比的任意概率分布指定的比例随机变量的概率密度变量的概率密度函数(PDF)的概率密度函数(PDF)计算。随机变量。统一的方案应用于原始FRF和TFS的不确定度量,而没有任何后处理,例如平均,平滑和窗口,并且通过使用简单支持的光束的振动测试场数据来验证所提出的方案的效率阿拉莫萨峡谷桥。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号