首页> 外文期刊>Mechanical systems and signal processing >Experimental assessment of polynomial nonlinear state-space and nonlinear-mode models for near-resonant vibrations
【24h】

Experimental assessment of polynomial nonlinear state-space and nonlinear-mode models for near-resonant vibrations

机译:多项式非线性状态空间和非线性模式模型对近谐振振动的实验评估

获取原文
获取原文并翻译 | 示例

摘要

In the present paper, two existing nonlinear system identification methodologies are used to identify data-driven models. The first methodology focuses on identifying the system using steady-state excitations. To accomplish this, a phase-locked loop controller is implemented to acquire periodic oscillations near resonance and construct a nonlinear-mode model. This model is based on amplitude-dependent modal properties, i.e. does not require nonlinear basis functions. The second methodology exploits uncontrolled experiments with broadband random inputs to build polynomial nonlinear state-space models using advanced system identification tools. The methods are applied to two experimental test rigs, a magnetic cantilever beam and a free-free beam with a lap joint. The respective models obtained by either method for both specimens are then challenged to predict dynamic, near-resonant behavior observed under different sine and sine-sweep excitations. The vibration prediction of the nonlinear-mode and state-space models clearly highlight capabilities and limitations. The nonlinear-mode model, by design, yields a perfect match at resonance peaks and high accuracy in close vicinity. However, it is limited to well-spaced modes and sinusoidal excitation. The state-space model covers a wider dynamic range, including transient excitations. However, the real-life nonlinearities considered in this study can only be approximated by polynomial basis functions. Consequently, the identified state-space models are found to be highly input-dependent, in particular for sinusoidal excitations where they are found to lead to a low predictive capability.
机译:在本文中,使用两个现有的非线性系统识别方法来识别数据驱动的模型。第一种方法侧重于使用稳态激励来识别系统。为了实现这一点,实现了锁相环控制器以在谐振附近获取周期性振荡并构造非线性模式模型。该模型基于幅度依赖性模态属性,即不需要非线性基本函数。第二种方法利用具有宽带随机输入的不受控制的实验,使用高级系统识别工具构建多项式非线性状态空间模型。将该方法应用于两个实验试验台,磁悬悬臂梁和带有膝盖接头的无自由梁。然后,通过两个样本方法获得的各个模型被攻击以预测在不同正弦和正弦扫描激发下观察到的动态,近谐振行为。非线性模式和状态模型的振动预测清楚地突出显示了能力和限制。通过设计,非线性模式模型在近距离附近的谐振峰值和高精度下产生完美匹配。然而,它仅限于良好间隔的模式和正弦激发。状态空间模型涵盖了更广泛的动态范围,包括瞬态激励。然而,本研究中考虑的现实生活非线性只能通过多项式基函数来近似。因此,发现所识别的状态空间模型是高度输入的,特别是对于发现它们导致低预测能力的正弦激励。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号