首页> 外文期刊>Mechanical systems and signal processing >Auto-regressive model based input and parameter estimation for nonlinear finite element models
【24h】

Auto-regressive model based input and parameter estimation for nonlinear finite element models

机译:基于自动回归模型的非线性有限元模型的输入和参数估计

获取原文
获取原文并翻译 | 示例

摘要

A novel framework to accurately estimate nonlinear structural model parameters and unknown external inputs (i.e., loads) using sparse sensor networks is proposed and validated. The framework assumes a time-varying auto-regressive (TAR) model for unknown loads and develops a strategy to simultaneously estimate those loads and parameters of the nonlinear model using an unscented Kalman filter (UKF). First, it is confirmed that a Kalman filter (KF) allows to estimate TAR parameters for a measured, earthquake, acceleration time-history. The KF-based framework is then coupled to an UKF to jointly identify unmeasured inputs and nonlinear finite element (FE) model parameters. The proposed approach systematically assimilates different structural response quantities to estimate TAR and FE model parameters and, as a result, updates the FE model and unknown external excitation estimates. The framework is validated using simulated experiments on a realistic three-dimensional nonlinear steel frame subjected to unknown seismic ground motion. It is demonstrated that assuming relatively low order TAR model for the unknown input leads to precise reconstruction and unbiased estimation of nonlinear model parameters that are most sensitive to measured system response.
机译:提出了一种使用稀疏传感器网络准确地估计非线性结构模型参数和未知外部输入(即负载)的新颖框架。该框架假设用于未知负载的时变自自动回归(Tar)模型,并开发使用Unscented Kalman滤波器(UKF)同时估计非线性模型的那些负载和参数的策略。首先,确认卡尔曼滤波器(KF)允许估计测量,地震,加速时间历史的焦油参数。然后基于基于KF的框架耦合到UKF以共同识别未测量的输入和非线性有限元(FE)模型参数。所提出的方法系统地吸收了不同的结构响应量来估计焦油和FE模型参数,结果更新FE模型和未知的外部激励估计。使用模拟实验在经受未知地震地面运动的现实三维非线性钢框架上进行验证框架。证明假设未知输入的相对低位的TAR模型导致对测量系统响应最敏感的非线性模型参数的精确重建和非偏见估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号