首页> 外文期刊>Mechanical systems and signal processing >Wave-based motion and slewing control of a double- appendage, flexible system with ungrounded actuator through development of direct actuator force control
【24h】

Wave-based motion and slewing control of a double- appendage, flexible system with ungrounded actuator through development of direct actuator force control

机译:通过直接执行器力控制的开发,对具有不接地执行器的双附件柔性系统进行基于波的运动和回转控制

获取原文
获取原文并翻译 | 示例

摘要

Wave-based control is a relatively new approach which has already been applied successfully to control a range of under-actuated, flexible mechanical systems, such as robots and cranes, through a rest-to-rest manoeuvre after it identifies, then measures and finally exploits the propagation time delay effects inherent in flexible systems. In this technique, the actuator motion is directly controlled in a way that, simultaneously, indirectly controls the motion of the attached flexible systems, thereby combining position control and active vibration damping. A significant development of this strategy is here presented, in which the directly controlled actuation variable is force (or torque) rather than position or motion, as before. This new formulation is particularly relevant for motion control of systems whose actuators are not grounded, such as spacecraft, with thrusters, reaction wheels or magnetic torquers, where the natural, actuator input variable is a force or torque, to be specified by the control law (rather than actuator motion). This development considers a real (non-ideal) actuator with significant inertia and thus associated time delay in responding to input signals. The new control design approach is presented, and applied to planar, translation and rotation (slewing) of an approximate model of a spacecraft having two flexible appendages, representing for example, solar panel arrays or antennas, modelled as systems of lumped masses and springs, with (possibly) different appendages on one spacecraft. Despite the dynamic complexity of the multiple attached flexible arrays, having many degrees of freedom, with complex vibration modes, and use of a non-ideal, ungrounded actuator, the proposed control strategy can achieve precise motion control, whether translation, rotation or both, while actively suppressing vibrations of the flexible appendages.
机译:基于波的控制是一种相对较新的方法,已被成功应用,它可以通过识别,然后测量并最终通过静止操作来成功地控制一系列动作不足的灵活机械系统,例如机器人和起重机。利用了灵活系统固有的传播时间延迟效应。在这种技术中,直接控制执行机构的运动,同时间接控制所连接柔性系统的运动,从而将位置控制和主动减振相结合。这里提出了该策略的重大发展,其中直接控制的致动变量是力(或扭矩)而不是位置或运动,如前所述。此新公式特别适用于执行器未接地的系统(例如航天器)的推进器,反作用轮或电磁扭矩器的运动控制,其中,执行器的自然输入变量为力或扭矩,由控制律规定(而不是执行器运动)。该发展考虑了具有显着惯性的真实(非理想)执行器,因此在响应输入信号时具有相关的时间延迟。提出了新的控制设计方法,并将其应用于航天器的近似模型的平面,平移和旋转(回转),该航天器具有两个柔性附件,例如太阳能电池板阵列或天线,建模为集总质量和弹簧系统,在一个航天器上(可能)有不同的附件。尽管具有多个自由度,具有复杂的振动模式并且使用了非理想的,不接地的执行器,但多个附加的柔性阵列的动态复杂性,所提出的控制策略仍可以实现精确的运动控制,无论是平移,旋转还是两者兼而有之,同时积极抑制柔性附件的振动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号