首页> 外文期刊>Mechanical systems and signal processing >Braking pressure control in electro-hydraulic brake system based on pressure estimation with nonlinearities and uncertainties
【24h】

Braking pressure control in electro-hydraulic brake system based on pressure estimation with nonlinearities and uncertainties

机译:基于非线性和不确定性压力估计的电液制动系统制动压力控制

获取原文
获取原文并翻译 | 示例

摘要

Superior to the conventional brake systems, brake-by-wire (BBW) systems can produce faster response and better performance. This paper presents an adaptive sliding mode hydraulic pressure controller based on a hydraulic pressure estimator to track desired hydraulic pressure for 'sensorless' electro-hydraulic brake system (EHB) in the presence of both nonlinearities and uncertainties. There are no add-in sensors (i.e. pressure sensor, position sensor) equipped in the sensorless EHB. The rotation angle of the motor is available by the braking control unit, and it can be transformed to the position of the master cylinder piston via the kinematic relationship. The position is utilized as the input of the whole control system. The friction of the EHB is analyzed and the position-dependent Coulomb + viscous friction model is presented to represent the friction. The system is also influenced by the pressure-position relationship, which is described as perturbations that are nonlinearly parameterized by unknown time-varying parameters. The pressure-position relationship is modeled using a quadratic polynomial, and the nonlinear interconnected observation approach is applied to the system for estimating the unknown parameter and pressure. To eliminate the influence of parametric uncertainties on the control performance, an adaptive module is employed. The uncertainties are also caused by the brake pads wear and the temperature effect. The sliding mode control (SMC) algorithm is used in the pressure-tracking loop to improve the robustness for disturbance. The interconnected stability of the whole closed-loop system is analyzed based on the Lyapunov Theorem. The performance of estimator and controller is verified via simulations and experiments. The results show that the proposed control system provides satisfactory tracking performance and robustness in the presence of uncertainties, nonlinearities and disturbances in the diverse working region. (C) 2019 Published by Elsevier Ltd.
机译:线控制动(BBW)系统优于常规制动系统,可产生更快的响应和更好的性能。本文提出了一种基于液压估计器的自适应滑模液压控制器,该控制器可在存在非线性和不确定性的情况下跟踪“无传感器”电液制动系统(EHB)的所需液压。无传感器EHB中没有配备附加传感器(即压力传感器,位置传感器)。制动控制单元可提供电动机的旋转角度,并可通过运动关系将其转换为主缸活塞的位置。该位置被用作整个控制系统的输入。分析了EHB的摩擦,并提出了位置相关的库仑+粘滞摩擦模型来表示该摩擦。该系统还受压力-位置关系的影响,该关系被描述为由未知时变参数非线性参数化的摄动。使用二次多项式对压力-位置关系进行建模,并将非线性互连观测方法应用于系统以估计未知参数和压力。为了消除参数不确定性对控制性能的影响,采用了自适应模块。不确定性还由制动衬块的磨损和温度影响引起。压力跟踪回路中使用了滑模控制(SMC)算法,以提高对干扰的鲁棒性。基于李雅普诺夫定理分析了整个闭环系统的互连稳定性。通过仿真和实验验证了估计器和控制器的性能。结果表明,在不同工作区域存在不确定性,非线性和干扰的情况下,提出的控制系统具有令人满意的跟踪性能和鲁棒性。 (C)2019由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号