首页> 外文期刊>Mechanical systems and signal processing >Identification of vehicle axle loads from bridge responses using preconditioned least square QR-factorization algorithm
【24h】

Identification of vehicle axle loads from bridge responses using preconditioned least square QR-factorization algorithm

机译:使用预处理的最小二乘QR分解算法从桥梁响应识别车轴载荷

获取原文
获取原文并翻译 | 示例

摘要

This paper develops a novel method for moving force identification (MFI) called preconditioned least square QR-factorization (PLSQR) method. The algorithm seeks to reduce the impact of identification errors caused by unknown noise. The biaxial moving forces travel on a simply supported bridge at three different speeds is used to generate numerical simulations to assess the effectiveness and applicability of the algorithm. Results indicate that the method is more robust towards ill-posed problem and has higher identification precision than the conventional time domain method (TDM). In addition, the robustness and ill-posed immunity of PLSQR are directly affected by two kinds of regularization parameters, namely, number of iterations j and regularization matrix L. Compared with the standard form of least square QR-factorization (LSQR), i.e., the regularization matrix L being the identity matrix I-n, the PLSQR with the optimal number of iterations j and regularization matrix L has many advantages on MFI and it is more suitable for field trials due to better adaptability with type of sensors and number of sensors. (C) 2019 Elsevier Ltd. All rights reserved.
机译:本文开发了一种新的运动力识别方法(MFI),称为预处理最小二乘QR分解(PLSQR)方法。该算法试图减少由未知噪声引起的识别错误的影响。双轴移动力以三种不同的速度在简单支撑的桥上传播,用于生成数值模拟,以评估算法的有效性和适用性。结果表明,与常规时域方法(TDM)相比,该方法对不适定问题具有更强的鲁棒性,并且具有更高的识别精度。此外,PLSQR的鲁棒性和不适定免疫力直接受到两种正则化参数的影响,即迭代次数j和正则化矩阵L。与最小二乘QR分解的标准形式(LSQR)相比,以正则化矩阵L为单位矩阵In,具有最佳迭代次数j和正则化矩阵L的PLSQR在MFI上具有许多优势,由于对传感器类型和传感器数量的适应性更好,因此更适合于现场试验。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号