首页> 外文学位 >Bridge weigh-in-motion (WIM) algorithm for estimating axle weights, axle spacing, and other truck parameters.
【24h】

Bridge weigh-in-motion (WIM) algorithm for estimating axle weights, axle spacing, and other truck parameters.

机译:桥梁动态称重(WIM)算法,用于估算车轴重量,车轴间距和其他卡车参数。

获取原文
获取原文并翻译 | 示例

摘要

In this work, we discuss the development of a bridge weigh-in-motion (WIM) algorithm to predict axle weights to within 1% for ±1 × 10−6m measurement noise. WIM systems that use bridges as scales are already in limited use, but they are only able to predict axle weights to within 10–15%, in part due to the models used to represent the bridge and the truck. We are proposing a method to estimate truck axle weights, axle spacing, and speed that includes the dynamic properties of both the bridge and the truck, as well as the static effects of the truck weight, therefore, improving the axle weight estimates. Estimates of the truck's dynamic properties, including natural frequencies, damping ratios, and initial conditions, are also found.; To identify the truck, the deflection profiles over time at given measurement locations are calculated. An optimization routine is then employed to determine the set of truck parameters that produces the closest match to the “measured” deflection profile. Throughout this work, the bridge is modeled as a simply-supported Euler beam. Two truck models are used to represent the truck. The first treats each axle of the truck as a moving point force and considers only the static weight of each axle. Using this static truck model, only axle weights and axle spacing are unknown and treated as optimization parameters. The second truck model is a 2 degree-of-freedom ‘quarter-car’ model that represents the static weight as well as the dynamic behavior of the truck. The coupled bridge/truck equations of motion are developed and integrated to expressly include the interaction between the two. In this model, the static axle weights and axle spacing are again unknown as are the natural frequencies, damping ratios, and initial conditions of each mode of each axle. (Abstract shortened by UMI.)
机译:在这项工作中,我们讨论了桥梁动态称重(WIM)算法的开发,该算法可在±1×10 −6 m测量噪声的情况下预测车轴重量在1%以内。使用桥梁作为比例尺的WIM系统已经受到限制,但是它们只能预测车轴重量在10%到15%之内,部分原因是用于代表桥梁和卡车的模型。我们提出一种估算卡车轴重,轴间距和速度的方法,该方法应包括桥和卡车的动态特性以及卡车重量的静态影响,因此,可以改善轴重估算。还可以找到卡车的动态特性,包括固有频率,阻尼比和初始条件。为了识别卡车,计算了给定测量位置随时间的偏转曲线。然后采用优化例程来确定卡车参数集,该参数集与“测量的”挠度曲线最接近。在整个工作中,桥梁被建模为简单支撑的欧拉梁。使用两种卡车模型来代表卡车。第一种将卡车的每个车轴视为移动点力,并且仅考虑每个车轴的静态重量。使用这种静态卡车模型,只有轴重和轴距是未知的,并被视为优化参数。第二辆卡车模型是2自由度的“四分之一汽车”模型,代表卡车的静态重量和动态行为。开发并整合了耦合的桥/卡车运动方程,以明确包括两者之间的相互作用。在此模型中,静态轴重和轴距以及自然频率,阻尼比和每个轴的每种模式的初始条件同样未知。 (摘要由UMI缩短。)

著录项

  • 作者

    Leming, Sarah Kathryn.;

  • 作者单位

    The University of Oklahoma.;

  • 授予单位 The University of Oklahoma.;
  • 学科 Engineering Mechanical.; Engineering Civil.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 214 p.
  • 总页数 214
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;建筑科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号