首页> 外文期刊>Mechanical systems and signal processing >Kinematics-aware model predictive control for autonomous high-speed tracked vehicles under the off-road conditions
【24h】

Kinematics-aware model predictive control for autonomous high-speed tracked vehicles under the off-road conditions

机译:越野条件下自主高速履带车辆的运动学模型预测控制

获取原文
获取原文并翻译 | 示例

摘要

Although accurate trajectory tracking of autonomous vehicles strongly depends on a precise model, it is difficult to establish a precise model for high-speed tracked vehicles under off-road conditions, due to the complicated interactions between the tracks and the terrain. This paper presents a novel trajectory tracking methodology, called kinematics-aware model predictive control (KAMPC), by combining the slip kinematic model with a trajectory tracking control strategy for skid-steered tracked vehicles. For the slip kinematic model, an online identification methodology called six-parameter slip parameter estimation (SSPE) algorithm is proposed based on the instantaneous centers of rotation. For the trajectory tracking control strategy, optimized algorithm model predictive control is used to obtain the optimal control inputs. Finally, our method is validated through extensive experiments based on a distributed electric-drive high-speed tracked vehicle test platform over different types of terrain and varied off-road surface conditions. Experiment results show that the tracked vehicle kinematic characteristics are distinctive in off-road conditions, and the slipping and skidding that occur when turning are critical to this work. Compared with the other three widely used types of methodologies, the present KAMPC approach can reduce the average tracking residuals and has the best statistical performance. (C) 2019 Elsevier Ltd. All rights reserved.
机译:尽管自动驾驶车辆的精确轨迹跟踪在很大程度上取决于精确模型,但是由于在轨道和地形之间的复杂相互作用,在越野条件下很难为高速跟踪车辆建立精确模型。通过将滑移运动学模型与滑移履带车辆的轨迹跟踪控制策略相结合,提出了一种新颖的轨迹跟踪方法,称为运动学模型预测控制(KAMPC)。对于滑移运动学模型,提出了一种基于瞬时旋转中心的在线识别方法,称为六参数滑移参数估计(SSPE)算法。对于轨迹跟踪控制策略,采用优化的算法模型预测控制来获得最优控制输入。最后,我们的方法通过基于分布式电驱动高速履带车辆测试平台在不同类型的地形和变化的越野条件下进行的大量实验得到验证。实验结果表明,所跟踪的车辆运动学特征在越野条件下是独特的,转弯时发生的打滑和打滑对于这项工作至关重要。与其他三种广泛使用的方法相比,当前的KAMPC方法可以减少平均跟踪残差并具有最佳的统计性能。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号