首页> 外文期刊>Mechanical systems and signal processing >Input-state-parameter estimation of structural systems from limited output information
【24h】

Input-state-parameter estimation of structural systems from limited output information

机译:根据有限的输出信息估算结构系统的输入状态参数

获取原文
获取原文并翻译 | 示例

摘要

A successive Bayesian filtering framework for addressing the joint input-state-parameter estimation problem is proposed in this study. Following the notion of analytical, rather than hardware redundancy, the envisaged scheme, (i) adopts realistic assumptions on the sensor network capacity; and (ii) allows for a certain degree of uncertainty in the structural information available throughout the life-cycle of the monitored structure. This uncertainty is quantitatively expressed via a parameter vector of known functional relationship to the structural matrices. An observer is accordingly established, which recombines the dual and unscented Kalman filters. The former aims at tackling the unknown structural excitations, while the latter solves the state and parameter estimation problem via an augmented state-space. An extensive parametric study on simulated structural systems under different measurement setups, excitation types and structural properties demonstrates the method's effectiveness. (C) 2019 Elsevier Ltd. All rights reserved.
机译:本研究提出了一种用于解决联合输入状态参数估计问题的连续贝叶斯滤波框架。遵循分析而不是硬件冗余的概念,设想的方案(i)对传感器网络容量采用了现实的假设; (ii)允许在整个被监视结构的整个生命周期中获得的结构信息有一定程度的不确定性。这种不确定性通过与结构矩阵具有已知功能关系的参数向量来定量表示。相应地建立了一个观察者,该观察者重新组合了双重和无味的卡尔曼滤波器。前者旨在解决未知的结构激发问题,而后者旨在通过增强的状态空间解决状态和参数估计问题。在不同的测量设置,激励类型和结构特性下对模拟结构系统进行的广泛参数研究证明了该方法的有效性。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号