首页> 外文期刊>Mechanical systems and signal processing >Optimization of spring fatigue life prediction model for vehicle ride using hybrid multi-layer perceptron artificial neural networks
【24h】

Optimization of spring fatigue life prediction model for vehicle ride using hybrid multi-layer perceptron artificial neural networks

机译:混合多层感知器人工神经网络优化车辆行驶弹簧疲劳寿命预测模型

获取原文
获取原文并翻译 | 示例

摘要

In this study, hybrid multi-layer perceptron artificial neural network (HMLP ANN) models were developed to predict the fatigue life of automotive coil springs with high accuracy based on the vertical vibrations of the vehicle and natural frequencies of the vehicle suspension system. The design and development of vehicle suspension systems involve numerous steps from conceptual design to prototyping and testing, including fatigue life evaluation and vehicle ride analysis. Optimizing HMLP ANN models will significantly simplify the design and development process, which forms the motivation of this study. Simulations were conducted on a quarter car model to extract the loading signals using the measured acceleration signals and artificial road profiles as inputs. The fatigue life was predicted based on the Coffin-Manson, Morrow, and Smith-Watson-Topper strain-life models whereas the comfort ride index was assessed according to the ISO 2631-1:1997 standard. Various HMLP ANN models were trained using the Levenberg-Marquardt backpropagation algorithm to determine the optimum architectures. The lowest mean square error (0.0117) is obtained for the Morrow HMLP ANN model with three hidden layers. The coefficient of determination values are more than 0.9559, indicating that there is good fit between the training/testing datasets and the data predicted by the optimum HMLP ANN models. These models were validated using the conservative correlation approach and there is good agreement between the targeted and predicted fatigue life values. It can be concluded that the optimum HMLP ANN models are capable of predicting the fatigue life of automotive coil springs with acceptable accuracy. (C) 2018 Elsevier Ltd. All rights reserved.
机译:在这项研究中,基于车辆的垂直振动和车辆悬架系统的固有频率,开发了混合多层感知器人工神经网络(HMLP ANN)模型,以高精度预测汽车螺旋弹簧的疲劳寿命。车辆悬架系统的设计和开发涉及从概念设计到原型制作和测试的许多步骤,包括疲劳寿命评估和车辆行驶分析。优化HMLP ANN模型将大大简化设计和开发过程,这构成了本研究的动机。对四分之一汽车模型进行了仿真,以使用测得的加速度信号和人工道路轮廓作为输入来提取载荷信号。疲劳寿命是根据Coffin-Manson,Morrow和Smith-Watson-Topper应变寿命模型预测的,而舒适行驶指数是根据ISO 2631-1:1997标准评估的。使用Levenberg-Marquardt反向传播算法训练了各种HMLP ANN模型,以确定最佳架构。对于具有三个隐藏层的Morrow HMLP ANN模型,获得了最低的均方误差(0.0117)。确定值的系数大于0.9559,表明训练/测试数据集与最佳HMLP ANN模型预测的数据之间具有良好的拟合度。这些模型已使用保守相关方法进行了验证,目标疲劳寿命值与预期疲劳寿命值之间具有良好的一致性。可以得出结论,最优的HMLP ANN模型能够以可接受的精度预测汽车螺旋弹簧的疲劳寿命。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号