首页> 外文期刊>Mathematics of Control, Signals, and Systems (MCSS) >On the transversality of functions at the core of the transverse function approach to control
【24h】

On the transversality of functions at the core of the transverse function approach to control

机译:以功能的横向性为核心的横向函数控制方法

获取原文
获取原文并翻译 | 示例

摘要

The transverse function approach to control, introduced by Morin and Samson in the early 2000s, is based on functions that are transverse to a set of vector fields in a sense formally similar to, although strictly speaking different from, the classical notion of transversality in differential topology. In this paper, a precise link is established between transversality and the functions used in the transverse function approach. It is first shown that a smooth function f : M ® Q{f : M longrightarrow Q} is transverse to a set of vector fields which locally span a distribution D on Q if, and only if, its tangent mapping T f is transverse to D, where D is regarded as a submanifold of the tangent bundle T Q. It is further shown that each of these two conditions is equivalent to transversality of T f to D along the zero section of T M. These results are then used to rigorously state and prove that if M is compact and D is a distribution on Q, then the set of mappings of M into Q that are transverse to D is open in the strong (or “Whitney C ∞-”) topology on C ∞(M, Q).
机译:Morin和Samson在2000年代初提出的横向函数控制方法基于与一组矢量场正交的函数,该函数在某种意义上类似于但严格地说不同于经典的微分横向概念。拓扑。在本文中,在横向函数和横向函数方法中使用的函数之间建立了精确的联系。首先表明,光滑函数f:M®Q {f:M longrightarrow Q}横切于一组矢量场,这些场在且仅当切线映射T f横切于Q时才局部分布在Q上的分布D上。 D,其中D被视为切线束T Q的子流形。进一步表明,这两个条件中的每一个都等效于T f到D沿T M的零截面的横向性。然后将这些结果严格地用于陈述并证明如果M是紧致的并且D是Q上的分布,则M到Q的,与D垂直的映射的集合在强(或“惠特尼C ∞-” )C ∞(M,Q)上的拓扑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号