首页> 外文期刊>Mathematics and computers in simulation >An efficient operation matrix method for solving fractal-fractional differential equations with generalized Caputo-type fractional-fractal derivative
【24h】

An efficient operation matrix method for solving fractal-fractional differential equations with generalized Caputo-type fractional-fractal derivative

机译:一种高效的操作矩阵方法,用于求解具有广义的Caputo型分数分形衍生物的分形分数微分方程

获取原文
获取原文并翻译 | 示例

摘要

In this study, we present the new generalized derivative and integral operators which are based on the newly constructed new generalized Caputo fractal-fractional derivatives (NGCFFDs). Based on these operators, a numerical method is developed to solve the fractal-fractional differential equations (FFDEs). We approximate the solution of the FFDEs as basis vectors of shifted Legendre polynomials (SLPs). We also extend the derivative operational matrix of SLPs to the generalized derivative operational matrix in the sense of NGCFFDs. The efficiency of the developed numerical method is tested by taking various test examples. We also compare the results of our proposed method with the methods existed in the literature In this paper, we specified the fractal-fractional differential operator of new generalized Caputo in three categories: (i) different values in ρ and fractal parameters, (ⅱ) different values in fractional parameter while fractal and ρ parameters are fixed, and (ⅲ) different values in fractal parameter controlling fractional and ρ parameters.
机译:在这项研究中,我们提出了基于新构建的新构建的全新的Caputo分形衍生物(NGCFFD)的新的广义衍生物和积分运营商。基于这些运营商,开发了一种数值方法来解决分数分数微分方程(FFDES)。我们将FFDES的解决方案估为转移的Legendre多项式(SLP)的基础载体。我们还将SLP的衍生操作矩阵扩展到NGCFFDS的广义衍生业务矩阵。通过采用各种测试实施例测试所开发的数值方法的效率。我们还比较了我们提出的方法与文献中存在的方法,在本文中,我们指定了三类新型广义Caputo的分数分数差分运营商:(i)ρ和分形参数的不同值(Ⅱ)分数参数中的不同值,而分形和ρ参数是固定的,并且(Ⅲ)分形参数中的不同值控制分数和ρ参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号