首页> 外文期刊>Mathematics and computers in simulation >Integrated intelligence of neuro-evolution with sequential quadratic programming for second-order Lane-Emden pantograph models
【24h】

Integrated intelligence of neuro-evolution with sequential quadratic programming for second-order Lane-Emden pantograph models

机译:二阶车道映射仪模型顺序二次编程的神经演进综合智能

获取原文
获取原文并翻译 | 示例

摘要

The present research work is to put forth the numerical solutions of the nonlinear second-order Lane-Emden-pantograph (LEP) delay differential equation by using the approximation competency of the artificial neural networks (ANNs) trained with the combined strengths of global/local search exploitation of genetic algorithm (GA) and active-set (AS) method, i.e., ANNGAAS. In the proposed ANNGAAS, the objective function is designed by using the mean square error function with continuous mappings of ANNs for the LEP delay differential equation. The training of these constructed networks is conducted proficiently using the integrated capability of global search with GA and assisted local search along with AS approach. The performance of design computing paradigm ANNGAAS is evaluated effectively on variants of LEP delay differential models, while the statistical investigations based on different operators further validate the accuracy and convergence.
机译:本研究工作是通过使用以全球/局部的组合优势训练的人工神经网络(ANNS)的近似竞争力来提出非线性二阶车道-Modden-in-led-Pin-Pantiquid方程的数值解 搜索遗传算法(GA)和主动集(AS)方法,即ANNGAAS的开发。 在所提出的ANNGAAS中,客观函数是通过使用平均方误差函数设计与LEP延迟微分方程的ANN的连续映射。 这些构建网络的培训熟练地使用全球搜索的集成能力与GA和辅助本地搜索以及作为方法。 设计计算范式Annggaas的性能有效地对LEP延迟差分模型的变种进行了有效评估,而基于不同运营商的统计调查进一步验证了准确性和收敛性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号