首页> 外文期刊>Mathematics and computers in simulation >The stationary distribution in a class of stochastic SIRS epidemic models with non-monotonic incidence and degenerate diffusion
【24h】

The stationary distribution in a class of stochastic SIRS epidemic models with non-monotonic incidence and degenerate diffusion

机译:具有非单调发病率和退化扩散的一类随机SIRS疫情模型的固定分布

获取原文
获取原文并翻译 | 示例

摘要

A class of stochastic SIRS epidemic models with non-monotonic incidence and degenerate diffusion is investigated. By using the Lyapunov function method, the existence of global positive solutions and the ultimate boundedness with probability one are obtained. By using the Markov semigroups theory, Fokker-Planck equation and Khasminskii functions, the existence of unique stationary distribution for the model is established. That is, when the stochastic basic reproduction number R_0~S > 1 and some extra conditions are satisfied then the distribution density of any positive solutions of the model converges to a unique invariant density as t →+∞. Finally, the main conclusions and open problems are illustrated and verified by the numerical simulations.
机译:研究了一类具有非单调发病率和退化扩散的流行病模型。通过使用Lyapunov功能方法,获得全局正解的存在和具有概率的终极界限。通过使用Markov半群理论,Fokker-Planck方程和Khasminskii功能,建立了模型独特的静止分布。也就是说,当满足随机基本再现数R_0〜S> 1和一些额外条件时,模型的任何正解的分布密度会收敛到独特的不变密度,如T→+∞。最后,通过数值模拟说明和验证了主要结论和打开问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号