首页> 外文期刊>Mathematics and computers in simulation >Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method
【24h】

Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method

机译:通过子方程方法对广义多维数学物理模型的精确解

获取原文
获取原文并翻译 | 示例

摘要

In this paper, our focus is on the multidimensional mathematical physics models. We employ the sub-equation method to obtain new exact solutions to the proposed strongly nonlinear time-fractional differential equations of conformable type. The models considered are generalized Benjamin equation, modified generalized multidimensional Kadomtsev-Petviashvili (K.P) equations, modified generalized multidimensional KP-BBM equation and the variant Boussinesq system of equations. We also introduced a new modified generalized multidimensional KP type equation and its exact solutions. As the order of fractional derivative tends to one, the obtain exact solutions by the proposed method reduce to classical solutions. We successfully established varieties of soliton type solutions. The results obtained affirm that sub-equation method is an efficient and powerful technique for analytic solutions of nonlinear fractional partial differential equations.
机译:在本文中,我们的重点是在多维数学物理模型上。我们采用子方程方法来获得新的精确解决方案,提出的适用类型的强烈非线性时间分数微分方程。所考虑的模型是广义本杰明方程,修饰的广义多维kadomtsev-petviaShvili(K.P)方程,改进的广义多维kP-BBM方程和方程式的变体Boussinesq系统。我们还介绍了一种新的改进的广义多维kP型式等式及其精确解决方案。随着分数衍生物的顺序倾向于一个,通过所提出的方法获得精确的解决方案减少到经典解决方案。我们成功地建立了孤子型解决方案的品种。结果肯定了,子方程方法是非线性分数局部微分方程的分析解的有效且强大的技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号