首页> 外文期刊>Mathematics and computers in simulation >A fully discrete θ-method for solving semi-linear reaction-diffusion equations with time-variable delay
【24h】

A fully discrete θ-method for solving semi-linear reaction-diffusion equations with time-variable delay

机译:一种完全离散的θ-方法,用于求解半线性反应扩散方程与时间可变延迟

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a fully discrete θ-method with 0 ≤ θ ≤ 1 is suggested to solve the initial-boundary value problem of semi-linear reaction-diffusion equations with time-variable delay. Under some appropriate conditions, a novel global stability criterion of the method is derived and it is shown that this method has the computational accuracy O(τ~2 +h~2 ) (resp. O(τ+h~2 )) when θ = 1/2 (resp. θ ≠ 1/2), where h and τ denote spatial and temporal stepsizes, respectively. Moreover, with some numerical experiments, the theoretical accuracy and global stability of the method are further illustrated.
机译:本文,建议具有0≤θ≤1的完全离散θ-方法,以解决具有时间可变延迟的半线性反应扩散方程的初始边界值问题。在一些适当的条件下,推导出新的全局稳定性标准,并显示该方法具有计算精度O(τ〜2 + h〜2)(RESP.O(τ+ H〜2))时θ = 1/2(RESP。θ≠1/2),其中H和τ分别表示空间和时间步骤。此外,通过一些数值实验,进一步说明了该方法的理论精度和全局稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号