首页> 外文期刊>Mathematics and computers in simulation >An efficient multi-objective optimization algorithm based on level swarm optimizer
【24h】

An efficient multi-objective optimization algorithm based on level swarm optimizer

机译:基于级群优化器的高效多目标优化算法

获取原文
获取原文并翻译 | 示例

摘要

In the past few decades, evolutionary multi-objective optimization has become a research hotspot in the field of evolutionary computing, and a large number of multi-objective evolutionary algorithms (MOEAs) have been proposed. However, MOEA is still faced with the problem that the diversity and convergence of non-dominated solutions are difficult to balance. To address these problems, an efficient multi-objective optimization algorithm based on level swarm optimizer (EMOSO) is proposed in this paper. In EMOSO, a sorting method is introduced to balance the diversity and convergence of non-dominated solutions in the whole population, which is based on non-dominated relationship and density estimation. Meanwhile, a level-based learning strategy is introduced to maintain the search for non-dominated solutions. Finally, DTLZ, ZDT and WFG series problems are utilized to verify the performance of the proposed EMOSO. Experimental results and statistical analysis indicate that EMOSO has competitive performance compared with 6 popular MOEAs.
机译:在过去的几十年中,进化的多目标优化已经成为进化计算领域的研究热点,并且已经提出了大量的多目标进化算法(Moas)。然而,MOEA仍然面临着非主导解决方案的多样性和融合难以平衡的问题。为了解决这些问题,本文提出了一种基于级别群优化器(EMOSO)的有效的多目标优化算法。在Emoso中,引入了一种分类方法以平衡整个人群中非主导的解决方案的分集和收敛,这是基于非主导关系和密度估计。同时,引入了一种基于级别的学习策略,以维持搜索非主导解决方案。最后,利用DTLZ,ZDT和WFG系列问题来验证所提出的Emoso的性能。实验结果和统计分析表明,与6个受欢迎的Moeas相比,Emoso具有竞争性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号