首页> 外文期刊>Computational Intelligence >A hybrid multi-objective tour route optimization algorithm based on particle swarm optimization and artificial bee colony optimization
【24h】

A hybrid multi-objective tour route optimization algorithm based on particle swarm optimization and artificial bee colony optimization

机译:一种基于粒子群优化和人工蜂菌落优化的混合多目标巡回路径优化算法

获取原文
获取原文并翻译 | 示例

摘要

Computational intelligence techniques have widespread applications in the field of engineering process optimization, which typically comprises of multiple conflicting objectives. An efficient hybrid algorithm for solving multi-objective optimization, based on particle swarm optimization (PSO) and artificial bee colony optimization (ABCO) has been proposed in this paper. The novelty of this algorithm lies in allocating random initial solutions to the scout bees in the ABCO phase which are subsequently optimized in the PSO phase with respect to the velocity vector. The last phase involves loyalty decision-making for the uncommitted bees based on the waggle dance phase of ABCO. This procedure continues for multiple generations yielding optimum results. The algorithm is applied to a real life problem of intercity route optimization comprising of conflicting objectives like minimization of travel cost, maximization of the number of tourist spots visited and minimization of the deviation from desired tour duration. Solutions have been obtained using both pareto optimality and the classical weighted sum technique. The proposed algorithm, when compared analytically and graphically with the existing ABCO algorithm, has displayed consistently better performance for fitness values as well as for standard benchmark functions and performance metrics for convergence and coverage.
机译:计算智能技术在工程过程优化领域具有广泛的应用,该应用通常包括多个冲突目标。本文提出了一种基于粒子群优化(PSO)和人造蜂菌落优化(ABCO)的用于解决多目标优化的有效混合算法。该算法的新颖性在于将随机初始解决方案分配给ABCO相中的侦察蜜蜂,其随后在PSO相中优化了速度向量。最后一阶段涉及基于ABCO的Waggle Dance阶段的未提交的蜜蜂的忠诚决策。该过程持续多一代产生最佳结果。该算法应用于城市间路线优化的实际寿命问题,包括相互矛盾的目标,如旅行成本最小化,最大化的旅游斑点的数量和最小化了与所需巡回寿时间的偏差。使用Pareto最优性和经典加权和技术获得了解决方案。在与现有的ABCO算法进行分析和图形和图形上进行比较时,该算法始终显示了适合度值的始终如一的性能,以及用于收敛和覆盖的标准基准功能和性能度量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号