首页> 外文期刊>Mathematics and computers in simulation >Global asymptotic stability of stochastic complex-valued neural networks with probabilistic time-varying delays
【24h】

Global asymptotic stability of stochastic complex-valued neural networks with probabilistic time-varying delays

机译:具有概率时变时滞的随机复值神经网络的全局渐近稳定性

获取原文
获取原文并翻译 | 示例

摘要

This paper studies the global asymptotic stability problem for a class of stochastic complex-valued neural networks (SCVNNs) with probabilistic time-varying delays as well as stochastic disturbances. Based on the Lyapunov-Krasovskii functional (LKF) method and mathematical analytic techniques, delay-dependent stability criteria are derived by separating complex-valued neural networks (CVNNs) into real and imaginary parts. Furthermore, the obtained sufficient conditions are presented in terms of simplified linear matrix inequalities (LMIs), which can be straightforwardly solved by Matlab. Finally, two simulation examples are provided to show the effectiveness and advantages of the proposed results.
机译:本文研究了一类具有随机时变时滞和随机干扰的随机复数值神经网络(SCVNN)的全局渐近稳定性问题。基于Lyapunov-Krasovskii函数(LKF)方法和数学分析技术,通过将复值神经网络(CVNN)分为实部和虚部,得出与时延相关的稳定性准则。此外,根据简化的线性矩阵不等式(LMI)给出了获得的充分条件,可以通过Matlab直接解决。最后,提供了两个仿真示例来说明所提出结果的有效性和优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号