首页> 外文期刊>Mathematics and computers in simulation >Pade Numerical Method For The Rosenau-hyman Compacton Equation
【24h】

Pade Numerical Method For The Rosenau-hyman Compacton Equation

机译:Rosenau-hyman Compacton方程的Pade数值方法

获取原文
获取原文并翻译 | 示例

摘要

Three implicit finite difference methods based on Pade approximations in space are developed for the Rosenau-Hyman K(n, n) equation. The analytical solutions and their invariants are used to assess the accuracy of these methods. Shocks which develop after the interaction of compactons are shown to be independent of the numerical method and its parameters indicating that their origin may not be numerical. The accuracy in long-time integrations of high-order Pade methods is shown.
机译:针对Rosenau-Hyman K(n,n)方程,开发了三种基于空间Pade近似的隐式有限差分方法。分析解决方案及其不变式用于评估这些方法的准确性。压实物相互作用后产生的冲击被证明与数值方法无关,其参数表明其起源可能不是数值。显示了高阶Pade方法的长时间积分的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号