首页> 外文期刊>Mathematics and computers in simulation >On the deterministic solution of multidimensional parametric models using the Proper Generalized Decomposition
【24h】

On the deterministic solution of multidimensional parametric models using the Proper Generalized Decomposition

机译:用适当的广义分解确定多维参数模型的确定性解

获取原文
获取原文并翻译 | 示例

摘要

This paper focuses on the efficient solution of models defined in high dimensional spaces. Those models involve numerous numerical challenges because of their associated curse of dimensionality. It is well known that in mesh-based discrete models the complexity (degrees of freedom) scales exponentially with the dimension of the space. Many models encountered in computational science and engineering involve numerous dimensions called configurational coordinates. Some examples are the models encountered in biology making use of the chemical master equation, quantum chemistry involving the solution of the Schrodinger or Dirac equations, kinetic theory descriptions of complex systems based on the solution of the so-called Fokker-Planck equation, stochastic models in which the random variables are included as new coordinates, financial mathematics, etc. This paper revisits the curse of dimensionality and proposes an efficient strategy for circumventing such challenging issue. This strategy, based on the use of a Proper Generalized Decomposition, is specially well suited to treat the multidimensional parametric equations.
机译:本文关注于在高维空间中定义的模型的有效解决方案。这些模型因其相关的维数诅咒而涉及许多数值挑战。众所周知,在基于网格的离散模型中,复杂度(自由度)与空间的尺寸成指数关系。计算科学和工程学中遇到的许多模型涉及称为配置坐标的众多维度。一些例子是生物学中使用化学主方程式的模型,涉及Schrodinger或Dirac方程式的量子化学,基于所谓Fokker-Planck方程式的复杂系统的动力学理论描述,随机模型其中随机变量被包括作为新的坐标,金融数学等。本文重新审视了维度的诅咒,并提出了一种有效的策略来规避这一具有挑战性的问题。该策略基于使用适当的广义分解,特别适合于处理多维参数方程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号