首页> 外文期刊>Mathematics and computers in simulation >Construction and implementation of highly stable two-step continuous methods for stiff differential systems
【24h】

Construction and implementation of highly stable two-step continuous methods for stiff differential systems

机译:刚性微分系统高度稳定的两步连续方法的构建和实现

获取原文
获取原文并翻译 | 示例

摘要

We describe a class of two-step continuous methods for the numerical integration of initial-value problems based on stiff ordinary differential equations (ODEs). These methods generalize the class of two-step Runge-Kutta methods. We restrict our attention to methods of order p = m, where m is the number of internal stages, and stage order q =p to avoid order reduction phenomenon for stiff equations, and determine some of the parameters to reduce the contribution of high order terms in the local discretization error. Moreover, we enforce the methods to be /4-stable and L-stable. The results of some fixed and variable stepsize numerical experiments which indicate the effectiveness of two-step continuous methods and reliability of local error estimation will also be presented.
机译:我们描述了一类基于刚性常微分方程(ODE)的初值问题数值积分的两步连续方法。这些方法概括了两步Runge-Kutta方法的类。我们将注意力集中在阶数p = m的方法上,其中m是内部级数,阶数q = p以避免刚性方程的阶数减少现象,并确定一些参数来减少高阶项的贡献在本地离散化错误。此外,我们将方法强制为/ 4稳定和L稳定。一些固定和可变步长数值实验的结果表明了两步连续方法的有效性和局部误差估计的可靠性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号