首页> 外文期刊>Mathematics and computers in simulation >Turing instability and traveling fronts for a nonlinear reaction-diffusion system with cross-diffusion
【24h】

Turing instability and traveling fronts for a nonlinear reaction-diffusion system with cross-diffusion

机译:具有交叉扩散的非线性反应扩散系统的图灵不稳定性和传播前沿

获取原文
获取原文并翻译 | 示例

摘要

In this work we investigate the phenomena of pattern formation and wave propagation for a reaction-diffusion system with nonlinear diffusion. We show how cross-diffusion destabilizes uniform equilibrium and is responsible for the initiation of spatial patterns. Near marginal stability, through a weakly nonlinear analysis, we are able to predict the shape and the amplitude of the pattern. For the amplitude, in the supercritical and in the subcritical case, we derive the cubic and the quintic Stuart-Landau equation respectively. When the size of the spatial domain is large, and the initial perturbation is localized, the pattern is formed sequentially and invades the whole domain as a traveling wavefront. In this case the amplitude of the pattern is modulated in space and the corresponding evolution is governed by the Ginzburg-Landau equation.
机译:在这项工作中,我们研究了具有非线性扩散的反应扩散系统的图案形成和波传播现象。我们展示了交叉扩散如何破坏稳定的均衡,并负责空间模式的启动。通过微弱的非线性分析,接近边缘稳定性,我们能够预测图案的形状和幅度。对于振幅,在超临界和亚临界情况下,我们分别推导了三次方程和​​五次Stuart-Landau方程。当空间域的大小较大并且初始扰动被局部化时,图案将依次形成并作为行进波前侵入整个域。在这种情况下,模式的幅度在空间中被调制,并且相应的演变由Ginzburg-Landau方程控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号