首页> 外文期刊>Mathematics and computers in simulation >A dimension-reduction algorithm for the valuation of surrender options in EIA contracts with stochastic interest rates
【24h】

A dimension-reduction algorithm for the valuation of surrender options in EIA contracts with stochastic interest rates

机译:降维算法用于随机利率环境影响评价合同中的投降期权估值

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a fast algorithm for the fair valuation of a ratchet-type equity-indexed annuity (EIA) endowment contract with surrender options under Vasicek stochastic interest rate models. Traditionally, the valuation for the indexed equity and interest rate of an American-type surrender option is performed under two-dimensional tree models, which is time-consuming for computation. This paper first applies the Black-Scholes method for ratchet-type options to reduce the two-dimensional tree structure to single one. Next, to overcome the path dependent problem inherent in the ratchet option, we also propose a recursive formula to implement the backward computation. By using the proposed algorithm, we are able to perform numerical analysis to verify that surrender options are more valuable with the increase of interest rates. High interest rate volatility enhances both the bonus and surrender option values entitled to the policyholder. A numerical experiment also shows that increasing interest rates may decrease the bonus option value but increase the surrender option value. These results can provide suggestions for insurance companies regarding the issue of EIA policies.
机译:本文提出了一种在Vasicek随机利率模型​​下对带有投降期权的棘轮式权益指数年金(EIA)捐赠合同进行公平估值的快速算法。传统上,美式投降期权的指数资产和利率估值是在二维树模型下进行的,这在计算上非常耗时。本文首先将Black-Scholes方法用于棘轮型期权,以将二维树结构简化为单树。接下来,为克服棘轮选择中固有的与路径有关的问题,我们还提出了一个递归公式来实现反向计算。通过使用所提出的算法,我们能够进行数值分析,以证明随着利率的上升,投降期权的价值更高。高利率波动会增加保单持有人应得的红利和退保期权价值。数值实验还表明,提高利率可能会降低红利期权价值,但会增加退保期权价值。这些结果可以为保险公司提供有关环评政策问题的建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号