首页> 外文期刊>Mathematics and computers in simulation >Classical and Bayesian estimation of reliability in a multicomponent stress-strength model based on the proportional reversed hazard rate mode
【24h】

Classical and Bayesian estimation of reliability in a multicomponent stress-strength model based on the proportional reversed hazard rate mode

机译:基于比例反向风险率模式的多分量应力-强度模型中可靠性的经典和贝叶斯估计

获取原文
获取原文并翻译 | 示例

摘要

In this study, we consider a multicomponent system which has k statistically independent and identically distributed strength components X_1,..., X_k and each component is exposed to a common random stress Y when the underlying distributions belonging to the proportional reversed hazard rate model. The system is regarded as operating only if at least s out of k (1 ≤s≤ k) strength variables exceeds the random stress. The reliability of the system is estimated by using both frequentist and Bayesian approach. The Bayes estimates for the reliability of the system have been developed by using Lindley's approximation and the Markov Chain Monte Carlo method due to the lack of explicit forms. The uniformly minimum variance unbiased and exact Bayes estimates for the reliability of the system are also obtained analytically when the common scale parameter is known. The asymptotic confidence interval and coverage probabilities are derived based on both the Fisher and the observed information matrices. The highest probability density credible interval is constructed by using Markov Chain Monte Carlo method. Monte Carlo simulations are performed to compare the performances of the proposed reliability estimators. Real data set is also analyzed for an illustration of the findings.
机译:在这项研究中,我们考虑一个多组分系统,它具有k个统计独立且强度分布相同的强度分量X_1,...,X_k,并且当基础分布属于比例逆向风险率模型时,每个分量都暴露于共同的随机应力Y。仅当k个变量中的至少s个(1≤s≤k)超过随机应力时,系统才被视为处于运行状态。系统的可靠性是通过使用频度法和贝叶斯法来估计的。由于缺乏明确的形式,通过使用Lindley逼近法和Markov Chain Monte Carlo方法已经开发了系统的Bayes估计。当已知公共比例参数时,还可以通过分析获得系统可靠性的一致最小方差无偏和精确贝叶斯估计。渐近置信区间和覆盖率概率是基于Fisher和观察到的信息矩阵得出的。利用马尔可夫链蒙特卡罗方法构造了最高概率密度可信区间。进行蒙特卡洛模拟以比较所提出的可靠性估计器的性能。还对真实数据集进行了分析,以说明发现结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号