首页> 外文期刊>Mathematics and computers in simulation >Zero-Hopf bifurcations in 3-dimensional differential systems with no equilibria
【24h】

Zero-Hopf bifurcations in 3-dimensional differential systems with no equilibria

机译:无平衡的3维微分系统的零霍夫分支

获取原文
获取原文并翻译 | 示例

摘要

Recently sixteen 3-dimensional differential systems exhibiting chaotic motion and having no equilibria have been studied, and it has been graphically observed that these systems have a period-doubling cascade of periodic orbits providing a route to chaos. Here using new results on the averaging theory we prove that these systems exhibit, for some values of their parameters different to the ones having chaotic motion, either a zero-Hopf or a Hopf bifurcation, and graphically we observed that the periodic orbit starting in those bifurcations is at the beginning of the mentioned period-doubling cascade.
机译:最近,已经研究了十六种表现出混沌运动并且没有平衡的3维微分系统,并且已经通过图形观察到这些系统具有周期轨道的倍增级联级联,提供了通往混沌的途径。在这里,使用平均理论上的新结果,我们证明了这些系统对于某些参数的值(不同于具有混沌运动的系统)表现出零霍普夫或霍普夫分叉,并且通过图形观察,我们观察到周期轨道从那些分叉是上述倍增周期的开始。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号