首页> 外文期刊>Mathematics and computers in simulation >Halton-type sequences in rational bases in the ring of rational integers and in the ring of polynomials over a finite field
【24h】

Halton-type sequences in rational bases in the ring of rational integers and in the ring of polynomials over a finite field

机译:有限域上有理整数环和多项式环的有理基数的Halton型序列

获取原文
获取原文并翻译 | 示例

摘要

The aim of this paper is to generalize the well-known Halton sequences from integer bases to rational number bases and to translate this concept of Halton-type sequences in rational bases from the ring of integers to the ring of polynomials over a finite field. These two new classes of Halton-type sequences are low-discrepancy sequences. More exactly, the first class, based on the ring of integers, satisfies the discrepancy bounds that were recently obtained by Atanassov for the ordinary Halton sequence, and the second class, based on the ring of polynomials over a finite field, satisfies the discrepancy bounds that were recently introduced by Tezuka and by Faure & Lemieux for the generalized Niederreiter sequences.
机译:本文的目的是将著名的Halton序列从整数基数推广到有理数基数,并将Halton型序列在有理数基础上的概念从整数环转换为多项式环。这两种新的Halton类型序列是低差异序列。更确切地说,基于整数环的第一类满足Atanassov最近针对普通Halton序列获得的差异界,而第二类基于有限域上的多项式环满足差异界Tezuka和Faure&Lemieux最近针对广义Niederreiter序列引入了这些序列。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号