首页> 外文期刊>Mathematical Programming >Smooth sample average approximation of stationary points in nonsmooth stochastic optimization and applications
【24h】

Smooth sample average approximation of stationary points in nonsmooth stochastic optimization and applications

机译:非平稳随机优化和应用中平稳点的平滑样本平均逼近

获取原文
获取原文并翻译 | 示例

摘要

Inspired by a recent work by Alexander et al. (J Bank Finance 30:583–605, 2006) which proposes a smoothing method to deal with nonsmoothness in a conditional value-at-risk problem, we consider a smoothing scheme for a general class of nonsmooth stochastic problems. Assuming that a smoothed problem is solved by a sample average approximation method, we investigate the convergence of stationary points of the smoothed sample average approximation problem as sample size increases and show that w.p.1 accumulation points of the stationary points of the approximation problem are weak stationary points of their counterparts of the true problem. Moreover, under some metric regularity conditions, we obtain an error bound on approximate stationary points. The convergence result is applied to a conditional value-at-risk problem and an inventory control problem. Keywords Smoothing method - Sample average approximation - Stationary points - Error bound Mathematics Subject Classification (2000) 90C15 - 65K05 - 91B28
机译:受亚历山大等人最近工作的启发。 (J Bank Finance 30:583–605,2006)提出了一种平滑方法来处理条件风险值问题中的非平滑性,我们考虑了针对一类普通的非平滑随机问题的平滑方案。假设通过样本平均逼近方法解决了平滑问题,我们研究了随着样本数量的增加,平滑样本平均逼近问题的平稳点的收敛性,并证明了近似问题的平稳点的wp1累积点是弱平稳的点对口的真正问题。此外,在某些度量规则性条件下,我们获得了近似平稳点的误差范围。收敛结果应用于有条件的风险价值问题和库存控制问题。平滑方法-样本平均逼近度-平稳点-误差界数学主题分类(2000)90C15-65K05-91B28

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号