首页> 外文期刊>Computational Optimization and Applications >A smoothing sample average approximation method for stochastic optimization problems with CVaR risk measure
【24h】

A smoothing sample average approximation method for stochastic optimization problems with CVaR risk measure

机译:CVaR风险度量的随机优化问题的平滑样本平均近似方法

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with solving single CVaR and mixed CVaR minimization problems. A CHKS-type smoothing sample average approximation (SAA) method is proposed for solving these two problems, which retains the convexity and smoothness of the original problem and is easy to implement. For any fixed smoothing constant ε, this method produces a sequence whose cluster points are weak stationary points of the CVaR optimization problems with probability one. This framework of combining smoothing technique and SAA scheme can be extended to other smoothing functions as well. Practical numerical examples arising from logistics management are presented to show the usefulness of this method.
机译:本文涉及解决单个CVaR和混合CVaR最小化问题。为了解决这两个问题,提出了一种CHKS型平滑样本平均逼近(SAA)方法,该方法保留了原始问题的凸性和平滑性,并且易于实现。对于任何固定的平滑常数ε,此方法都会生成一个序列,其聚类点是CVaR优化问题的弱固定点,概率为1。这种结合了平滑技术和SAA方案的框架也可以扩展到其他平滑功能。给出了物流管理产生的实际数值示例,以证明该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号