首页> 外文期刊>Mathematical Programming >Max Flow and Min Cut with bounded-length paths: complexity, algorithms, and approximation
【24h】

Max Flow and Min Cut with bounded-length paths: complexity, algorithms, and approximation

机译:有限长度路径的最大流量和最小剪切:复杂性,算法和近似

获取原文
获取原文并翻译 | 示例

摘要

We consider the “flow on paths” versions of Max Flow and Min Cut when we restrict to paths having at most B arcs, and for versions where we allow fractional solutions or require integral solutions. We show that the continuous versions are polynomial even if B is part of the input, but that the integral versions are polynomial only when B ≤ 3. However, when B ≤ 3 we show how to solve the problems using ordinary Max Flow/Min Cut. We also give tight bounds on the integrality gaps between the integral and continuous objective values for both problems, and between the continuous objective values for the bounded-length paths version and the version allowing all paths. We give a primal–dual approximation algorithm for both problems whose approximation ratio attains the integrality gap, thereby showing that it is the best possible primal–dual approximation algorithm.
机译:当我们限制到最多具有B弧的路径时,以及对于允许分数解或需要整数解的版本,我们将考虑“最大流”和“最小割”的“路径上流”版本。我们证明即使B是输入的一部分,连续形式也是多项式,但是只有当B≤3时,整数形式才是多项式。但是,当B≤3时,我们展示了如何使用普通的最大流量/最小切割来解决问题。 。对于两个问题的积分目标值和连续目标值之间的有界间隙,以及有界路径版本和允许所有路径的版本的连续目标值之间的完整性差距,我们也给出了严格的界限。对于这两个问题的近似对比率都达到了完整性差距的问题,我们给出了原始对偶近似算法,从而表明这是最佳的原始对偶近似算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号