首页> 外文期刊>Mathematical Programming >Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity
【24h】

Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity

机译:用于无约束优化的自适应三次正则化方法。第二部分:最坏情况下的函数和导数评估的复杂性

获取原文
获取原文并翻译 | 示例

摘要

An Adaptive Regularisation framework using Cubics (ARC) was proposed for unconstrained optimization and analysed in Cartis, Gould and Toint (Part I, Math Program, doi:10.1007/s10107-009-0286-5, 2009), generalizing at the same time an unpublished method due to Griewank (Technical Report NA/12, 1981, DAMTP, University of Cambridge), an algorithm by Nesterov and Polyak (Math Program 108(1):177–205, 2006) and a proposal by Weiser, Deuflhard and Erdmann (Optim Methods Softw 22(3):413–431, 2007). In this companion paper, we further the analysis by providing worst-case global iteration complexity bounds for ARC and a second-order variant to achieve approximate first-order, and for the latter second-order, criticality of the iterates. In particular, the second-order ARC algorithm requires at most ${mathcal{O}(epsilon^{-3/2})}$ iterations, or equivalently, function- and gradient-evaluations, to drive the norm of the gradient of the objective below the desired accuracy ${epsilon}$ , and ${mathcal{O}(epsilon^{-3})}$ iterations, to reach approximate nonnegative curvature in a subspace. The orders of these bounds match those proved for Algorithm 3.3 of Nesterov and Polyak which minimizes the cubic model globally on each iteration. Our approach is more general in that it allows the cubic model to be solved only approximately and may employ approximate Hessians.
机译:提出了一种使用Cubics(ARC)的自适应正则化框架进行无约束优化的方法,并在Cartis,Gould和Toint中进行了分析(第一部分,Math Program,doi:10.1007 / s10107-009-0286-5,2009),同时概括了由于Griewank(技术报告NA / 12,1981,DAMTP,剑桥大学),Nesterov和Polyak的算法(Math Program 108(1):177-205,2006)以及Weiser,Deuflhard和Erdmann的提议而未发表的方法(Optim Methods Softw 22(3):413-431,2007)。在此随附的论文中,我们通过为ARC和二阶变量提供最坏情况的全局迭代复杂度范围来实现近似一阶,而为二阶变量提供迭代的临界度,来进一步分析。特别是,二阶ARC算法最多需要$ {mathcal {O}(epsilon ^ {-3/2})} $次迭代,或者等效地,使用函数和梯度求值来驱动梯度的范数。低于所需精度$ {epsilon} $和$ {mathcal {O}(epsilon ^ {-3})} $迭代的目标,以达到子空间中的近似非负曲率。这些边界的阶次与Nesterov和Polyak的算法3.3所证明的阶次相匹配,后者在每次迭代时全局最小化了三次模型。我们的方法更为笼统,因为它只允许近似求解三次模型,并且可以采用近似的Hessians。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号