机译:通过正半定矩阵完成来利用线性和非线性矩阵不等式中的稀疏性
Department of Mathematics, Ewha Women’s University, 11-1 Dahyun-dong, Sudaemoon-gu, Seoul, 120-750, Korea;
Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, 2-12-1 Oh-Okayama, Meguro-ku, Tokyo, 152-8552, Japan;
Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, 2-12-1 Oh-Okayama, Meguro-ku, Tokyo, 152-8552, Japan;
Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, 2-12-1 Oh-Okayama, Meguro-ku, Tokyo, 152-8552, Japan;
Semidefinite Program; Matrix Inequalities; Polynomial Optimization; Positive Semidefinite Matrix Completion; Sparsity; Chordal Graph; 90C22; 90C26; 90C30;
机译:通过正半定矩阵完成来利用线性和非线性矩阵不等式中的稀疏性
机译:通过矩阵完成在半定规划中利用稀疏性II:实现和数值结果
机译:通过矩阵完成在半定规划中利用稀疏性II:实现和数值结果
机译:矩阵膨胀法在稀疏半定规划中的稀疏性开发
机译:最小排名正面Semidefinite矩阵完成与曲棍球稀疏模式
机译:高级别胶质瘤患者的MGMT和IDH1联合状态预测的多标签非线性矩阵完成与传导性多任务特征选择
机译:利用正半定矩阵完备法挖掘线性和非线性矩阵不等式的稀疏性