首页> 外文期刊>Mathematical Problems in Engineering >Laplace-Type Semi-Invariants for a System of Two Linear Hyperbolic Equations by Complex Methods
【24h】

Laplace-Type Semi-Invariants for a System of Two Linear Hyperbolic Equations by Complex Methods

机译:用复杂方法求解两个线性双曲方程组的Laplace型半不变量

获取原文
获取原文并翻译 | 示例

摘要

In 1773 Laplace obtained two fundamental semi-invariants, called Laplace invariants, for scalar linear hyperbolic partial differential equations (PDEs) in two independent variables. He utilized this in his integration theory for such equations. Recently, Tsaousi and Sophocleous studied semi-invariants for systems of two linear hyperbolic PDEs in two independent variables. Separately, by splitting a complex scalar ordinary differential equation (ODE) into its real and imaginary parts PDEs for two functions of two variables were obtained and their symmetry structure studied. In this work we revisit semi-invariants under equivalence transformations of the dependent variables for systems of two linear hyperbolic PDEs in two independent variables when such systems correspond to scalar complex linear hyperbolic equations in two independent variables, using the above-mentioned splitting procedure. The semi-invariants under linear changes of the dependent variables deduced for this class of hyperbolic linear systems correspond to the complex semi-invariants of the complex scalar linear (1 + 1) hyperbolic equation. We show that the adjoint factorization corresponds precisely to the complex splitting. We also study the reductions and the inverse problem when such systems of two linear hyperbolic PDEs arise from a linear complex hyperbolic PDE. Examples are given to show the application of this approach.
机译:1773年,拉普拉斯针对两个独立变量中的标量线性双曲偏微分方程(PDE)获得了两个基本的半不变式,称为拉普拉斯不变式。他在积分理论中将其用于此类方程式。最近,Tsaousi和Sophocleous研究了两个线性双曲型PDE在两个独立变量中的系统的半不变量。通过将复标量常微分方程(ODE)分解为其实部和虚部,分别获得了两个变量的两个函数的PDE,并研究了它们的对称结构。在这项工作中,我们使用上述拆分程序,在两个独立变量中的两个线性双曲型PDE系统对应因变量的等价变换下,重新访问半不变量,当此类系统对应于两个独立变量中的标量复线性双曲型方程时。为此类双曲线性系统推导的因变量线性变化下的半不变量与复标量线性(1 +1)双曲方程的复半不变量相对应。我们证明了伴随分解正好对应于复杂的分裂。当两个线性双曲型PDE的系统由线性复双曲型PDE产生时,我们还研究了归约和逆问题。举例说明了这种方法的应用。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2011年第4期|p.1-15|共15页
  • 作者单位

    Centre for Differential Equations, Continuum Mechanics and Applications, School of Computational and Applied Mathematics, University of the Witwatersrand, Wits 2050, South Africa;

    Centre for Advanced Mathematics and Physics, National University of Sciences and Technology, Campus H-12, Islamabad 44000, Pakistan;

    Centre for Differential Equations, Continuum Mechanics and Applications, School of Computational and Applied Mathematics, University of the Witwatersrand, Wits 2050, South Africa;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号