首页> 外文期刊>Mathematical Problems in Engineering >Hidden-Markov-Models-Based Dynamic Hand Gesture Recognition
【24h】

Hidden-Markov-Models-Based Dynamic Hand Gesture Recognition

机译:基于隐马尔可夫模型的动态手势识别

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with the recognition of dynamic hand gestures. A method based on Hidden Markov Models (HMMs) is presented for dynamic gesture trajectory modeling and recognition. Adaboost algorithm is used to detect the user's hand and a contour-based hand tracker is formed combining condensation and partitioned sampling. Cubic B-spline is adopted to approximately fit the trajectory points into a curve. Invariant curve moments as global features and orientation as local features are computed to represent the trajectory of hand gesture. The proposed method can achieve automatic hand gesture online recognition and can successfully reject atypical gestures. The experimental results show that the proposed algorithm can reach better recognition results than the traditional hand recognition method.
机译:本文涉及动态手势的识别。提出了一种基于隐马尔可夫模型(HMM)的动态手势轨迹建模与识别方法。 Adaboost算法用于检测用户的手,结合凝结和分区采样形成基于轮廓的手跟踪器。采用三次B样条曲线将轨迹点近似拟合为曲线。计算出作为整体特征的不变弯矩和作为局部特征的取向以表示手势的轨迹。所提出的方法可以实现自动手势在线识别,并且可以成功地拒绝非典型手势。实验结果表明,与传统的手部识别方法相比,该算法具有更好的识别效果。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2012年第5期|p.13.1-13.11|共11页
  • 作者单位

    College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China;

    College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China;

    Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China;

    Zhejiang Jieshang Vision Science and Technology Cooperation, Hangzhou 310013, China;

    Department of Mathematics, University of Salerno, Via Ponte Don Melillo, 84084 Fisciano, Italy;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号