首页> 外文期刊>Mathematical Problems in Engineering >A Generalized Robust Minimization Framework for Low-Rank Matrix Recovery
【24h】

A Generalized Robust Minimization Framework for Low-Rank Matrix Recovery

机译:用于低秩矩阵恢复的通用鲁棒最小化框架

获取原文
获取原文并翻译 | 示例

摘要

This paper considers the problem of recovering low-rank matrices which are heavily corrupted by outliers or large errors. To improve the robustness of existing recovery methods, the problem is solved by formulating it as a generalized nonsmooth nonconvex minimization functional via exploiting the Schatten p-norm (0<p≤1) and L_q(0<q≤1) seminorm. Two numerical algorithms are provided based on the augmented Lagrange multiplier (ALM) and accelerated proximal gradient (APG) methods as well as efficient root-finder strategies. Experimental results demonstrate that the proposed generalized approach is more inclusive and effective compared with state-of-the-art methods, either convex or nonconvex.
机译:本文考虑了恢复因异常值或大错误而严重损坏的低秩矩阵的问题。为了提高现有恢复方法的鲁棒性,通过利用Schatten p范数(0 <p≤1)和L_q(0 <q≤1)半范式将其表示为广义非光滑非凸最小化泛函来解决该问题。基于增强拉格朗日乘数(ALM)和加速近端梯度(APG)方法以及有效的寻根策略,提供了两种数值算法。实验结果表明,与最先进的凸或非凸方法相比,提出的广义方法更具包容性和有效性。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2014年第9期|656074.1-656074.8|共8页
  • 作者单位

    College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;

    College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;

    College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;

    School of Mathematics and Statistics, Nanjing Audit University, Nanjing 211815, China;

    School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm 10044, Sweden;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号