首页> 外文期刊>Neurocomputing >Exact recovery low-rank matrix via transformed affine matrix rank minimization
【24h】

Exact recovery low-rank matrix via transformed affine matrix rank minimization

机译:通过变换仿射矩阵秩最小化的精确恢复低秩矩阵

获取原文
获取原文并翻译 | 示例

摘要

The goal of affine matrix rank minimization problem is to reconstruct a low-rank or approximately low-rank matrix under linear constraints. In general, this problem is combinatorial and NP-hard. In this paper, a nonconvex fraction function is studied to approximate the rank of a matrix and translate this NP-hard problem into a transformed affine matrix rank minimization problem. The equivalence between these two problems is established, and we proved that the uniqueness of the global minimizer of transformed affine matrix rank minimization problem also solves affine matrix rank minimization problem if some conditions are satisfied. Moreover, we also proved that the optimal solution to the transformed affine matrix rank minimization problem can be approximately obtained by solving its regularization problem for some proper smaller lambda 0. Lastly, the DC algorithm is utilized to solve the regularization transformed affine matrix rank minimization problem and the numerical experiments on image inpainting problems show that our method performs effectively in recovering low-rank images compared with some state-of-art algorithms. (c) 2018 Elsevier B.V. All rights reserved.
机译:仿射矩阵秩最小化问题的目的是在线性约束下重建低秩或近似低秩的矩阵。通常,此问题是组合问题和NP问题。在本文中,研究了一个非凸分数函数来近似矩阵的秩,并将该NP-hard问题转化为一个变换的仿射矩阵秩最小化问题。建立了这两个问题之间的等价关系,并证明了如果满足某些条件,则变换仿射矩阵秩最小化问题的全局极小值的唯一性也可以解决仿射矩阵秩最小化的问题。此外,我们还证明了,通过对某个适当的较小lambda> 0求解正则化问题,可以近似地解决变换仿射矩阵秩最小化问题的最优解。问题和图像修复问题的数值实验表明,与某些最新算法相比,我们的方法在恢复低秩图像方面表现出了出色的性能。 (c)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2018年第30期|1-12|共12页
  • 作者单位
  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号