首页> 外文期刊>Mathematical Problems in Engineering >Eddy Current Inversion Models for Estimating Dimensions of Defects in Multilayered Structures
【24h】

Eddy Current Inversion Models for Estimating Dimensions of Defects in Multilayered Structures

机译:多层结构缺陷尺寸的涡流反演模型

获取原文
获取原文并翻译 | 示例

摘要

In eddy current nondestructive evaluation, one of the principal challenges is to determine the dimensions of defects in multilayered structures from the measured signals. It is a typical inverse problem which is generally considered to be nonlinear and ill-posed. In the paper, two effective approaches have been proposed to estimate the defect dimensions. The first one is a partial least squares (PLS) regression method. The second one is a kernel partial least squares (KPLS) regression method. The experimental research is carried out. In experiments, the eddy current signals responding to magnetic field changes are detected by a giant magnetoresistive (GMR) sensor and preprocessed for noise elimination using a wavelet packet analysis (WPA) method. Then, the proposed two approaches are used to construct the inversion models of defect dimension estimation. Finally, the estimation results are analyzed. The performance comparison between the proposed two approaches and the artificial neural network (ANN) method is presented. The comparison results demonstrate the feasibility and validity of the proposed two methods. Between them, the KPLS regression method gives a better prediction performance than the PLS regression method at present.
机译:在涡流无损评估中,主要挑战之一是根据测量信号确定多层结构中缺陷的尺寸。这是一个典型的反问题,通常被认为是非线性且不适定的。在本文中,提出了两种有效的方法来估计缺陷尺寸。第一种是偏最小二乘(PLS)回归方法。第二种是核偏最小二乘(KPLS)回归方法。进行了实验研究。在实验中,通过巨磁阻(GMR)传感器检测响应磁场变化的涡流信号,并使用小波包分析(WPA)方法对其进行预处理以消除噪声。然后,提出了两种方法来构造缺陷尺寸估计的反演模型。最后,对估计结果进行了分析。提出了两种方法与人工神经网络方法之间的性能比较。比较结果证明了所提两种方法的可行性和有效性。在它们之间,KPLS回归方法比目前的PLS回归方法具有更好的预测性能。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2014年第5期|649608.1-649608.11|共11页
  • 作者单位

    Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming 650500, China;

    Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming 650500, China;

    Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming 650500, China;

    Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming 650500, China;

    Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming 650500, China;

    Puer Power Supply Bureau, Yunnan Power Grid Corporation, Pu'er 665000, China;

    Puer Power Supply Bureau, Yunnan Power Grid Corporation, Pu'er 665000, China;

    Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming 650500, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号