首页> 外文期刊>Mathematical Problems in Engineering >A Novel Parameter Estimation Method for Muskingum Model Using New Newton-Type Trust Region Algorithm
【24h】

A Novel Parameter Estimation Method for Muskingum Model Using New Newton-Type Trust Region Algorithm

机译:Newton型信赖域算法的Muskingum模型参数估计新方法

获取原文
获取原文并翻译 | 示例

摘要

Parameters estimation of Muskingum model is very significative in both exploitation and utilization of water resources and hydrological forecasting. The optimal results of parameters directly affect the accuracy of flood forecasting. This paper considers the parameters estimation problem of Muskingum model from the following two aspects. Firstly, based on the general trapezoid formulas, a class of new discretization methods including a parameter theta to approximate Muskingum model is presented. The accuracy of these methods is second-order, when theta not equal 1/3. Particularly, if we choose theta = 1/3, the accuracy of the presented method can be improved to third-order. Secondly, according to the Newton-type trust region algorithm, a new Newton-type trust region algorithm is given to obtain the parameters of Muskingum model. This method can avoid high dependence on the initial parameters. The average absolute errors (AAE) and the average relative errors (ARE) of the proposed algorithm of parameters estimation for Muskingum model are 8.208122 and 2.462438%, respectively, where theta = 1/3. It is shown from these results that the presented algorithm has higher forecasting accuracy and wider practicability than other methods.
机译:Muskingum模型的参数估计对水资源的开发利用和水文预报都具有重要意义。参数的最优结果直接影响洪水预报的准确性。本文从以下两个方面考虑了Muskingum模型的参数估计问题。首先,基于一般的梯形公式,提出了一类新的离散化方法,包括近似the Muskingum模型的参数theta。当θ不等于1/3时,这些方法的精度是二阶的。特别地,如果我们选择theta = 1/3,则所提出方法的精度可以提高到三阶。其次,根据牛顿型信赖域算法,提出了一种新的牛顿型信赖域算法来获取Muskingum模型的参数。该方法可以避免对初始参数的高度依赖。提出的用于Muskingum模型的参数估计算法的平均绝对误差(AAE)和平均相对误差(ARE)分别为8.208122%和2.462438%,其中theta = 1/3。从这些结果可以看出,与其他方法相比,该算法具有较高的预测精度和实用性。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2014年第22期|634852.1-634852.7|共7页
  • 作者单位

    Guangxi Univ, Coll Math & Informat Sci, Nanning 530004, Guangxi, Peoples R China.;

    Hunan City Univ, Sch Informat Sci & Engn, Yiyang 413000, Hunan, Peoples R China.;

    Chizhou Coll, Dept Math & Comp Sci, Chizhou 247000, Anhui, Peoples R China.;

    Guangxi Univ, Coll Math & Informat Sci, Nanning 530004, Guangxi, Peoples R China.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号