首页> 外文期刊>Mathematical Problems in Engineering >Fault Diagnosis of Oil-Immersed Transformers Using Self-Organization Antibody Network and Immune Operator
【24h】

Fault Diagnosis of Oil-Immersed Transformers Using Self-Organization Antibody Network and Immune Operator

机译:基于自组织抗体网络和免疫算子的油浸式变压器故障诊断

获取原文
获取原文并翻译 | 示例

摘要

There are some drawbacks when diagnosis techniques based on one intelligent method are applied to identify incipient faults in power transformers. In this paper, a hybrid immune algorithm is proposed to improve the reliability of fault diagnosis. The proposed algorithm is a hybridization of self-organization antibody network (soAbNet) and immune operator. There are two phases in immune operator. One is vaccination, and the other is immune selection. In the process of vaccination, vaccines were obtained from training dataset by using consistency-preserving K-means algorithm (K-means-CP algorithm) and were taken as the initial antibodies for soAbNet. After the soAbNet was trained, immune selection was applied to optimize the memory antibodies in the trained soAbNet. The effectiveness of the proposed algorithm is verified using benchmark classification dataset and real-world transformer fault dataset. For comparison purpose, three transformer diagnosis methods such as the IEC criteria, back propagation neural network (BPNN), and soAbNet are utilized. The experimental results indicate that the proposed approach can extract the dataset characteristics efficiently and the diagnostic accuracy is higher than that obtained with other individual methods.
机译:当基于一种智能方法的诊断技术被用于识别变压器的初期故障时,存在一些缺陷。为了提高故障诊断的可靠性,提出了一种混合免疫算法。所提出的算法是自组织抗体网络(soAbNet)和免疫算子的杂交。免疫算子有两个阶段。一种是疫苗接种,另一种是免疫选择。在疫苗接种过程中,使用保持一致性的K-means算法(K-means-CP算法)从训练数据集中获得疫苗,并将其作为soAbNet的初始抗体。在对soAbNet进行训练后,进行免疫选择以优化训练后的soAbNet中的记忆抗体。使用基准分类数据集和实际变压器故障数据集验证了该算法的有效性。为了进行比较,使用了三种变压器诊断方法,例如IEC标准,反向传播神经网络(BPNN)和soAbNet。实验结果表明,该方法可以有效地提取数据集特征,并且诊断准确率高于其他方法。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2014年第21期|847623.1-847623.8|共8页
  • 作者

    Zhang Liwei;

  • 作者单位

    Northeast Dianli Univ, Sch Elect Engn, Chuanying 132012, Jilin, Peoples R China.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号