首页> 外文期刊>Mathematical Problems in Engineering >Event-Driven Molecular Dynamics Simulation of Hard-Sphere Gas Flows in Microchannels
【24h】

Event-Driven Molecular Dynamics Simulation of Hard-Sphere Gas Flows in Microchannels

机译:基于事件驱动的微通道中硬球气体流动的分子动力学模拟

获取原文
获取原文并翻译 | 示例

摘要

Classical solution of Navier-Stokes equations with nonslip boundary condition leads to inaccurate predictions of flow characteristics of rarefied gases confined in microanochannels. Therefore, molecular interaction based simulations are often used to properly express velocity and temperature slips at high Knudsen numbers (Kn) seen at dilute gases or narrow channels. In this study, an event-driven molecular dynamics (EDMD) simulation is proposed to estimate properties of hard-sphere gas flows. Considering molecules as hard-spheres, trajectories of the molecules, collision partners, corresponding interaction times, and postcollision velocities are computed deterministically using discrete interaction potentials. On the other hand, boundary interactions are handled stochastically. Added to that, in order to create a pressure gradient along the channel, an implicit treatment for flow boundaries is adapted for EDMD simulations. Shear-Driven (Couette) and Pressure-Driven flows for various channel configurations are simulated to demonstrate the validity of suggested treatment. Results agree well with DSMC method and solution of linearized Boltzmann equation. At low Kn, EDMD produces similar velocity profiles with Navier-Stokes (N-S) equations and slip boundary conditions, but as Kn increases, N-S slip models overestimate slip velocities.
机译:具有防滑边界条件的Navier-Stokes方程的经典解会导致对受限于微/纳米通道中的稀有气体流动特性的预测不准确。因此,通常使用基于分子相互作用的模拟来正确表达在稀气体或狭窄通道中看到的高努数(Kn)下的速度和温度滑移。在这项研究中,提出了一种事件驱动的分子动力学(EDMD)模拟来估计硬球气流的特性。将分子视为硬球,可使用离散的相互作用势确定性地计算分子的轨迹,碰撞伙伴,相应的相互作用时间和碰撞后速度。另一方面,边界相互作用是随机处理的。除此之外,为了沿通道创建压力梯度,针对流边界的隐式处理适用于EDMD模拟。模拟了各种通道配置的剪切驱动(剪切管)和压力驱动流,以证明建议处理的有效性。结果与DSMC方法和线性化Boltzmann方程的解吻合良好。在低Kn时,EDMD与Navier-Stokes(NS)方程和滑移边界条件产生相似的速度分布,但是随着Kn的增加,N-S滑移模型会高估滑移速度。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2015年第24期|842837.1-842837.12|共12页
  • 作者单位

    Mugla Sitki Kocman Univ, Dept Energy Syst Engn, TR-48100 Mugla, Turkey|Gebze Tech Univ, Dept Mech Engn, TR-41400 Gebze, Kocaeli, Turkey;

    Gebze Tech Univ, Dept Mech Engn, TR-41400 Gebze, Kocaeli, Turkey;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号