首页> 外文学位 >Numerical simulations of high Knudsen number gas flows and microchannel electrokinetic liquid flows.
【24h】

Numerical simulations of high Knudsen number gas flows and microchannel electrokinetic liquid flows.

机译:高克努森数气流和微通道电动液体流量的数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

Low pressure and microchannel gas flows are characterized by high Knudsen numbers. Liquid flows in microchannels are characterized by non-conventional driving potentials like electrokinetic forces. The main thrust of the dissertation is to investigate these two different kinds of flows in gases and liquids respectively.; High Knudsen number (Kn) gas flows were characterized by ‘rarified’ or ‘microscale’ behavior. Because of significant non-continuum effect, traditional CFD techniques are often inaccurate for analyzing high Kn number gas flows. The direct simulation Monte Carlo (DSMC) method offers an alternative to traditional CFD which retains its validity in slip and transition flow regimes. To validate the DSMC code, comparisons of simulation results with theoretical analysis and experimental data are made. The DSMC method was first applied to compute low pressure, high Kn flow fields in partially heated two dimensional channels. The effects of varying pressure, inlet flow and gas transport properties (Kn, Reynolds number, Re and the Prandtl number, Pr respectively) on the wall heat transfer (Nusselt number, Nu) were examined.; The DSMC method was employed to explore mixing gas flows in two dimensional microchannels. Mixing of two gas streams (H2 and O2) was considered within a microchannel. The effect of the inlet-outlet pressure difference, the pressure ratio of the incoming streams and the accommodation coefficient of the solid wall on mixing length were all examined.; Parallelization of a three-dimensional DSMC code was implemented using OpenMP procedure on a shared memory multi-processor computer. The parallel code was used to simulate 3D high Kn number Couette flow and the flow characteristics are found to be very different from their continuum counterparts.; A mathematical model describing electrokinetically driven mass transport phenomena in microfabricated chip devices will also be presented. The model accounts for the principal physical phenomena affecting sample mass transport in microchip channels. Numerical simulations were performed to study the capillary electrophoresis flow in microchannels. Flow fields and species distribution are simulated for both the loading and the dispensing steps in a two dimensional cross channel device for species separation. The goal of these simulations is to identify the parameters providing optimal separation performance.
机译:低压和微通道气流的特征在于高努数。微通道中的液体流动的特征在于非常规驱动电位,例如电动势。本文的主要目的是分别研究气体和液体中这两种不同的流动。高努数(Kn)气流的特征是“稀有”或“微观”行为。由于显着的非连续性影响,传统的CFD技术通常对于分析高Kn数的气体流量是不准确的。直接模拟蒙特卡洛(DSMC)方法提供了传统CFD的替代方法,该方法在滑移和过渡流动状态下仍保持其有效性。为了验证DSMC代码,将仿真结果与理论分析和实验数据进行了比较。 DSMC方法首先应用于计算部分加热的二维通道中的低压,高Kn流场。考察了压力变化,入口流量和气体传输特性(分别为Kn,雷诺数,Re和Prandtl数,Pr)对壁传热(Nusselt数,Nu)的影响。 DSMC方法用于探索二维微通道中的混合气流。在微通道内考虑了两种气流(H 2 和O 2 )的混合。考察了进,出口压力差,进料压力比和固体壁的调节系数对混合长度的影响。在共享内存多处理器计算机上使用OpenMP程序实现了三维DSMC代码的并行化。并行代码被用来模拟3D高Kn数库埃特流,并且发现其流动特性与它们的连续体非常不同。还将介绍描述微制造芯片设备中电动驱动的物质传输现象的数学模型。该模型说明了影响微芯片通道中样品质量传输的主要物理现象。进行数值模拟以研究微通道中的毛细管电泳流动。在二维交叉通道设备中,为装填和分配步骤模拟了流场和物质分布,以进行物质分离。这些模拟的目的是确定提供最佳分离性能的参数。

著录项

  • 作者

    Yan, Fang.;

  • 作者单位

    Drexel University.;

  • 授予单位 Drexel University.;
  • 学科 Engineering Mechanical.; Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 134 p.
  • 总页数 134
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;等离子体物理学;
  • 关键词

  • 入库时间 2022-08-17 11:44:57

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号