首页> 外文期刊>Mathematical Problems in Engineering >Intention-Aware Autonomous Driving Decision-Making in an Uncontrolled Intersection
【24h】

Intention-Aware Autonomous Driving Decision-Making in an Uncontrolled Intersection

机译:不受控制的交叉路口的意图感知自动驾驶决策

获取原文
获取原文并翻译 | 示例

摘要

Autonomous vehicles need to perform social accepted behaviors in complex urban scenarios including human-driven vehicles with uncertain intentions. This leads to many difficult decision-making problems, such as deciding a lane change maneuver and generating policies to pass through intersections. In this paper, we propose an intention-aware decision-making algorithm to solve this challenging problem in an uncontrolled intersection scenario. In order to consider uncertain intentions, we first develop a continuous hidden Markov model to predict both the high-level motion intention (e.g., turn right, turn left, and go straight) and the low level interaction intentions (e.g., yield status for related vehicles). Then a partially observable Markov decision process (POMDP) is built to model the general decision-making framework. Due to the difficulty in solving POMDP, we use proper assumptions and approximations to simplify this problem. A human-like policy generation mechanism is used to generate the possible candidates. Human-driven vehicles' future motion model is proposed to be applied in state transition process and the intention is updated during each prediction time step. The reward function, which considers the driving safety, traffic laws, time efficiency, and so forth, is designed to calculate the optimal policy. Finally, our method is evaluated in simulation with PreScan software and a driving simulator. The experiments show that our method could lead autonomous vehicle to pass through uncontrolled intersections safely and efficiently.
机译:自动驾驶汽车需要在复杂的城市场景中执行社会认可的行为,包括意图不确定的人类驾驶汽车。这导致许多困难的决策问题,例如,确定换道策略和生成通过交叉路口的策略。在本文中,我们提出了一种意图感知决策算法,以解决不受控路口场景下的这一难题。为了考虑不确定的意图,我们首先开发一个连续的隐马尔可夫模型,以预测高水平的运动意图(例如,向右转,向左转和直行)和低水平的交互意图(例如,相关对象的屈服状态)汽车)。然后,建立了部分可观察的马尔可夫决策过程(POMDP)以对通用决策框架进行建模。由于解决POMDP的困难,我们使用适当的假设和近似来简化此问题。类人策略生成机制用于生成可能的候选对象。提出将人类驾驶车辆的未来运动模型应用于状态转换过程,并在每个预测时间步长更新意图。奖励函数考虑了行车安全,交通法规,时间效率等因素,旨在计算最佳策略。最后,我们在PreScan软件和驾驶模拟器的仿真中对我们的方法进行了评估。实验表明,该方法可以使自动驾驶汽车安全,高效地通过不受控制的路口。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2016年第4期|1025349.1-1025349.15|共15页
  • 作者单位

    Beijing Inst Technol, Sch Mech Engn, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Mech Engn, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Mech Engn, Beijing 100081, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号