首页> 外文期刊>Mathematical Problems in Engineering >Identifying Recurring Bottlenecks on Urban Expressway Using a Fusion Method Based on Loop Detector Data
【24h】

Identifying Recurring Bottlenecks on Urban Expressway Using a Fusion Method Based on Loop Detector Data

机译:使用基于环路检测器数据的融合方法识别城市高速公路的重复瓶颈

获取原文
获取原文并翻译 | 示例

摘要

The accurate identification of recurrent bottlenecks has been an important assumption of many studies on traffic congestion analysis and management. As one of the most widely used traffic detection devices, loop detectors can provide reliable multidimensional data for traffic bottleneck identification. Although great efforts have been put on developing bottleneck identification methods based on loop detector data, the existing studies are less informative with respect to providing accurate position of the bottlenecks and discussing the algorithm efficiency when facing with large amount of real-time data. This paper aims at improving the quality of bottleneck identification as well as avoiding excessive data processing burden. A fusion method of loop detector data with different collection cycles is proposed. It firstly determines the occurrence and the approximate locations of bottlenecks using large cycle data considering its high accuracy in determining bottlenecks occurrence. Then, the small cycle data are used to determine the accurate location and the duration time of the bottlenecks. A case study is introduced to verify the proposed method. A large set of 30s raw loop detector data from a selected urban expressway segment in California is used. Also, the identification result is compared with the classical transformed cumulative curves method. The results show that the fusion method is valid with bottleneck identification and location positioning. We finally conclude by discussing some future improvements and potential applications.
机译:经常性瓶颈的准确识别是许多关于交通拥堵分析和管理研究的重要假设。作为最广泛使用的交通检测设备之一,循环检测器可以为流量瓶颈提供可靠的多维数据。尽管在基于环路检测器数据的基础上进行了巨大努力,但现有的研究对于提供瓶颈的准确位置并在面向大量的实时数据时讨论算法效率,但现有的研究较少。本文旨在提高瓶颈识别的质量,并避免过度的数据处理负担。提出了一种具有不同收集周期的环路检测器数据的融合方法。首先,通过考虑到确定瓶颈发生的高精度,确定使用大的循环数据来确定瓶颈的发生和近似位置。然后,使用小循环数据来确定瓶颈的准确位置和持续时间。介绍了案例研究以验证提出的方法。使用来自加利福尼亚州选定的城市高速公路段的大量30秒原始环路探测器数据。此外,将识别结果与经典转换的累积曲线方法进行比较。结果表明,融合方法有适用于瓶颈识别和位置定位。我们终于通过讨论了一些未来的改进和潜在应用来得出结论。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2019年第18期|5861414.1-5861414.9|共9页
  • 作者单位

    Xihua Univ Sch Automobile & Transportat Chengdu 610039 Sichuan Peoples R China;

    Xihua Univ Sch Automobile & Transportat Chengdu 610039 Sichuan Peoples R China;

    Xihua Univ Sch Automobile & Transportat Chengdu 610039 Sichuan Peoples R China|Beihang Univ Sch Elect & Informat Engn Beijing 100083 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号