首页> 外文期刊>Mathematical Problems in Engineering >Applying Two Simplified Ellipse-Based Tangential Models to Wheel-Rail Contact Using Three Alternative Nonelliptic Adaptation Approaches: A Comparative Study
【24h】

Applying Two Simplified Ellipse-Based Tangential Models to Wheel-Rail Contact Using Three Alternative Nonelliptic Adaptation Approaches: A Comparative Study

机译:使用三种替代非形貌适应方法将两种简化的椭圆形切线模型应用于轮轨接触:比较研究

获取原文
获取原文并翻译 | 示例

摘要

In the modeling of railway vehicle-track dynamics and wheel-rail damage, simplified tangential contact models based on ellipse assumption are usually used due to strict limitation of computational cost. Since most wheel-rail contact cases appear to be nonelliptic shapes, a fast and accurate tangential model for nonelliptic contact case is in demand. In this paper, two ellipse-based simplified tangential models (i.e., FASTSIM and FaStrip) using three alternative nonelliptic adaptation approaches, together with Kalker's NORM algorithm, are applied to wheel-rail rolling contact cases. It aims at finding the best approach for dealing with nonelliptic rolling contact. Compared to previous studies, the nonelliptic normal contact solution in the present work is accurately solved rather than simplification. Therefore, it can avoid tangential modeling evaluation affected by inaccurate normal contact solution. By comparing with Kalker's CONTACT code, it shows both FASTSIM-based and FaStrip-based models can provide accurate global creep force. With regard to local rolling contact solution, only the accuracy of FaStrip-based models is satisfactory. Moreover, Ayasse-Chollet's local ellipse approach appears to be the best choice for nonelliptic adaptation.
机译:在铁路车辆轨道动力学和轮轨损坏的建模中,由于严格限制计算成本,通常使用基于椭圆假设的简化切线型号。由于大多数轮轨接触箱似乎是无椭圆形的形状,因此不需要精确地切向模型。在本文中,使用三种替代的无图形适应方法与Kalker的常规算法一起使用了两个基于椭圆的简化切线模型(即,Fastsim和Fastrip),应用于轮轨滚动接触箱。它旨在找到处理无型滚动接触的最佳方法。与以前的研究相比,本作工作中的无关常态接触溶液是准确的而不是简化的。因此,它可以避免受到正常接触解决方案不准确的切向建模评估。通过与Kalker的联系代码进行比较,它显示了基于FastSIM的和基于Fastip的模型可以提供准确的全球蠕变力。关于局部滚动触点解决方案,只有基于Fastrip的模型的准确性令人满意。此外,Ayasse-Chollet的本地椭圆方法似乎是无形貌适应的最佳选择。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2019年第16期|3478607.1-3478607.17|共17页
  • 作者单位

    Southwest Jiaotong Univ MOE Key Lab High Speed Railway Engn Chengdu Sichuan Peoples R China|Southwest Jiaotong Univ Sch Civil Engn Chengdu Sichuan Peoples R China;

    Southwest Jiaotong Univ MOE Key Lab High Speed Railway Engn Chengdu Sichuan Peoples R China|Southwest Jiaotong Univ Sch Civil Engn Chengdu Sichuan Peoples R China;

    Southwest Jiaotong Univ MOE Key Lab High Speed Railway Engn Chengdu Sichuan Peoples R China|Southwest Jiaotong Univ Sch Civil Engn Chengdu Sichuan Peoples R China;

    Southwest Jiaotong Univ MOE Key Lab High Speed Railway Engn Chengdu Sichuan Peoples R China|Southwest Jiaotong Univ Sch Civil Engn Chengdu Sichuan Peoples R China;

    Southwest Jiaotong Univ MOE Key Lab High Speed Railway Engn Chengdu Sichuan Peoples R China|Southwest Jiaotong Univ Sch Civil Engn Chengdu Sichuan Peoples R China;

    Soochow Univ Sch Rail Transportat Suzhou Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号