首页> 外文期刊>Mathematical Problems in Engineering >A Method for Extracting High-Quality Core Data from Edge Computing Nodes
【24h】

A Method for Extracting High-Quality Core Data from Edge Computing Nodes

机译:一种从边缘计算节点提取高质量核心数据的方法

获取原文
获取原文并翻译 | 示例

摘要

Intelligent factory has the characteristics of wide data sources, high data dimensions, and strong data relevance. Intelligent factories need to make different decisions for different needs, so they need to efficiently analyze these data and explore the inherent laws contained in them. At the same time, the increasing amount of data brings various burdens to the network infrastructure between users and smart devices. For the above needs, this paper proposes a tension-based heterogeneous data fusion model in the edge computing layer, which represents the multisource heterogeneous data in the industrial scene as a tensor model, and uses the incremental decomposition algorithm to extract high-quality core data. The model reduces the data flow between the data center and the central cloud while retaining the core data set. Experiments show that the approximate tensor reconstructed from the tensor with 15% core data can guarantee 90% accuracy.
机译:智能工厂具有广泛的数据源,高数据尺寸和强大数据相关性的特点。智能工厂需要为不同的需求进行不同的决策,因此他们需要有效地分析这些数据并探索其中所含的固有法律。与此同时,增加的数据量会给用户和智能设备之间的网络基础设施带来各种负担。为了上述需求,本文提出了边缘计算层中的基于张力的异构数据融合模型,它表示工业场景中的Multisource异构数据作为张量模型,并使用增量分解算法提取高质量的核心数据。该模型在保留核心数据集时减少了数据中心和中央云之间的数据流。实验表明,从带15%的核心数据重建的近似张量可以保证90%的精度。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2019年第13期|3834846.1-3834846.10|共10页
  • 作者单位

    Xian Univ Posts & Telecommun Sch Comp Sci Xian Shaanxi Peoples R China|Xian Univ Posts & Telecommun Shaanxi Key Lab Network Data Anal & Intelligent P Xian Shaanxi Peoples R China;

    Xian Univ Posts & Telecommun Sch Comp Sci Xian Shaanxi Peoples R China;

    Xian Univ Posts & Telecommun Sch Comp Sci Xian Shaanxi Peoples R China|Xian Univ Posts & Telecommun Shaanxi Key Lab Network Data Anal & Intelligent P Xian Shaanxi Peoples R China;

    Xian Univ Posts & Telecommun Sch Comp Sci Xian Shaanxi Peoples R China;

    Xian Univ Posts & Telecommun Sch Comp Sci Xian Shaanxi Peoples R China|Xian Univ Posts & Telecommun Shaanxi Key Lab Network Data Anal & Intelligent P Xian Shaanxi Peoples R China;

    Xian Univ Posts & Telecommun Sch Commun & Informat Engn Xian Shaanxi Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号