首页> 外文期刊>Mathematical Problems in Engineering >Milling Stability Prediction with Multiple Delays via the Extended Adams-Moulton-Based Method
【24h】

Milling Stability Prediction with Multiple Delays via the Extended Adams-Moulton-Based Method

机译:基于扩展的基于Adams-Moulton的方法的多延迟铣削稳定性预测

获取原文
获取原文并翻译 | 示例

摘要

The occurrence of machining chatter may undermine the workpiece surface quality, accelerate the tool wear, and even result in serious damage to the machine tools. Consequently, it is of great importance to predict and eliminate the presence of such unstable and detrimental vibration. In this paper, we present an extended Adams-Moulton-based method for the stability prediction of milling processes with multiple delays. Taking the nonuniform pitch cutters or the tool runout into account, the regenerative chatter for milling operations can be formulated as delay differential equations with multiple delays. The dynamics model for milling regenerative chatter is rewritten in the state-space form. Dividing the spindle rotation period equally into small time intervals, the delay terms are approximated by Lagrange interpolation polynomials, and the Adams-Moulton method is adopted to construct the Floquet transition matrix. On this basis, the milling stability can be derived from the spectral radius of the transition matrix based on Floquet theory. The calculation efficiency and accuracy of the proposed algorithm are verified through making comparisons with the semidiscretization method (SDM) and the enhanced multistage homotopy perturbation method (EMHPM). The results show that the proposed method has both high computational efficiency and accuracy.
机译:机加工颤动的发生可能会破坏工件表面质量,加速刀具磨损,甚至严重损坏机床。因此,预测并消除这种不稳定而有害的振动的存在非常重要。在本文中,我们提出了一种基于Adams-Moulton的扩展方法,用于预测具有多个延迟的铣削过程的稳定性。考虑到不均匀的变桨铣刀或刀具跳动,铣削操作的再生颤动可以公式化为具有多个延迟的延迟微分方程。用于铣削再生颤振的动力学模型以状态空间形式重写。将主轴旋转周期平均划分为较小的时间间隔,通过Lagrange插值多项式近似延迟项,并采用Adams-Moulton方法构造Floquet转换矩阵。在此基础上,可以基于Floquet理论从过渡矩阵的光谱半径得出铣削稳定性。通过与半离散化方法(SDM)和增强型多级同伦扰动方法(EMHPM)进行比较,验证了该算法的计算效率和准确性。结果表明,该方法具有较高的计算效率和准确性。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2017年第2017期|7898369.1-7898369.15|共15页
  • 作者单位

    Shanghai Jiao Tong Univ, Sch Mech Engn, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China;

    Shanghai Jiao Tong Univ, Sch Mech Engn, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China;

    Shanghai Jiao Tong Univ, Sch Mech Engn, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号