首页> 外文期刊>Mathematical Problems in Engineering >The Application of PSO-AFSA Method in Parameter Optimization for Underactuated Autonomous Underwater Vehicle Control
【24h】

The Application of PSO-AFSA Method in Parameter Optimization for Underactuated Autonomous Underwater Vehicle Control

机译:PSO-AFSA方法在欠驱动自主水下航行器控制参数优化中的应用

获取原文
获取原文并翻译 | 示例

摘要

In consideration of the difficulty in determining the parameters of underactuated autonomous underwater vehicles in multi-degree-of-freedom motion control, a hybrid method that combines particle swarm optimization (PSO) with artificial fish school algorithm (AFSA) is proposed in this paper. The optimization process of the PSO-AFSA method is firstly introduced. With the control simulation models in the horizontal plane and vertical plane, the PSO-AFSA method is elaborated when applied in control parameter optimization for an underactuated autonomous underwater vehicle. Both simulation tests and field trials were carried out to prove the efficiency of the PSO-AFSA method in underactuated autonomous underwater vehicle control parameter optimization. The optimized control parameters showed admirable control quality by enabling the underactuated autonomous underwater vehicle to reach the desired states with fast convergence.
机译:考虑到在多自由度运动控制中确定欠驱动自动水下航行器参数的困难,提出了一种结合粒子群算法(PSO)和人工鱼群算法(AFSA)的混合方法。首先介绍了PSO-AFSA方法的优化过程。借助水平和垂直平面上的控制仿真模型,当将PSO-AFSA方法应用于欠驱动自动水下航行器的控制参数优化时,该方法得以详细阐述。进行了模拟测试和现场试验,以证明PSO-AFSA方法在欠驱动自动水下航行器控制参数优化中的效率。优化的控制参数通过使欠驱动的自主水下航行器以快速收敛达到所需状态而显示出令人钦佩的控制质量。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2017年第8期|6327482.1-6327482.14|共14页
  • 作者单位

    Harbin Engn Univ, Sci & Technol Underwater Vehicle Lab, Harbin 150001, Heilongjiang, Peoples R China;

    Harbin Engn Univ, Sci & Technol Underwater Vehicle Lab, Harbin 150001, Heilongjiang, Peoples R China;

    Harbin Engn Univ, Sci & Technol Underwater Vehicle Lab, Harbin 150001, Heilongjiang, Peoples R China;

    Harbin Engn Univ, Sci & Technol Underwater Vehicle Lab, Harbin 150001, Heilongjiang, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号