首页> 外文期刊>Mathematical Problems in Engineering >Application of Improved Particle Swarm Optimization in Vehicle Crashworthiness
【24h】

Application of Improved Particle Swarm Optimization in Vehicle Crashworthiness

机译:改进的粒子群算法在车辆防撞性中的应用

获取原文
获取原文并翻译 | 示例

摘要

In the optimization design process, particle swarm optimization (PSO) is limited by its slow convergence, low precision, and tendency to easily fall into the local extremum. These limitations make degradation inevitable in the evolution process and cause failure of finding the global optimum results. In this paper, based on chaos idea, the PSO algorithm is improved by adaptively adjusting parameters r1 and r2. The improved PSO is verified by four standard mathematical test functions. The results prove that the improved algorithm exhibits excellent convergence speed, global search ability, and stability in the optimization process, which jumps out of the local optimum and achieves global optimality due to the randomness, regularity, and ergodicity of chaotic thought. At last, the improved PSO algorithm is applied to vehicle crash research and is used to carry out the multiobjective optimization based on an approximate model. Compared with the results before the improvement, the improved PSO algorithm is remarkable in the collision index, which includes vehicle acceleration, critical position intrusion, and vehicle mass. In summary, the improved PSO algorithm has excellent optimization effects on vehicle collision.
机译:在优化设计过程中,粒子群优化(PSO)受其收敛速度慢,精度低以及易于陷入局部极值的趋势的限制。这些限制使得退化在进化过程中不可避免,并导致无法找到全局最优结果。本文基于混沌思想,通过自适应调整参数r1和r2对PSO算法进行了改进。改进的PSO已通过四个标准数学测试功能进行了验证。实验结果表明,改进算法在优化过程中具有良好的收敛速度,全局搜索能力和稳定性,由于混沌思想的随机性,规则性和遍历性,可以跳出局部最优解并达到全局最优解。最后,将改进的粒子群优化算法应用于车辆碰撞研究,并基于近似模型进行多目标优化。与改进前的结果相比,改进后的PSO算法在碰撞指数方面具有显着性,其中包括车辆加速度,关键位置侵入和车辆质量。综上所述,改进的PSO算法对车辆碰撞具有极好的优化效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号